Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-33592
Titel: Physiologically-Based Pharmacokinetic Models for CYP1A2 Drug-Drug Interaction Prediction: A Modeling Network of Fluvoxamine, Theophylline, Caffeine, Rifampicin, and Midazolam
VerfasserIn: Britz, Hannah
Hanke, Nina
Volz, Anke-Katrin
Spigset, Olav
Schwab, Matthias
Eissing, Thomas
Wendl, Thomas
Frechen, Sebastian
Lehr, Thorsten
Sprache: Englisch
Titel: CPT: Pharmacometrics & Systems Pharmacology
Bandnummer: 8
Heft: 5
Seiten: 296-307
Verlag/Plattform: Wiley
Erscheinungsjahr: 2019
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: This study provides whole-body physiologically-based pharmacokinetic models of the strong index cytochrome P450 (CYP)1A2 inhibitor and moderate CYP3A4 inhibitor fluvoxamine and of the sensitive CYP1A2 substrate theophylline. Both models were built and thoroughly evaluated for their application in drug-drug interaction (DDI) prediction in a network of perpetrator and victim drugs, combining them with previously developed models of caffeine (sensitive index CYP1A2 substrate), rifampicin (moderate CYP1A2 inducer), and midazolam (sensitive index CYP3A4 substrate). Simulation of all reported clinical DDI studies for combinations of these five drugs shows that the presented models reliably predict the observed drug concentrations, resulting in seven of eight of the predicted DDI area under the plasma curve (AUC) ratios (AUC during DDI/AUC control) and seven of seven of the predicted DDI peak plasma concentration (Cmax ) ratios (Cmax during DDI/Cmax control) within twofold of the observed values. Therefore, the models are considered qualified for DDI prediction. All models are comprehensively documented and publicly available, as tools to support the drug development and clinical research community.
DOI der Erstveröffentlichung: 10.1002/psp4.12397
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-335921
hdl:20.500.11880/30924
http://dx.doi.org/10.22028/D291-33592
ISSN: 2163-8306
Datum des Eintrags: 22-Mär-2021
Bezeichnung des in Beziehung stehenden Objekts: Supporting Information
In Beziehung stehendes Objekt: https://ascpt.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpsp4.12397&file=psp412397-sup-0001-Supinfo.zip
https://ascpt.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpsp4.12397&file=psp412397-sup-0002-DataS1.unk
https://ascpt.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpsp4.12397&file=psp412397-sup-0003-DataS2.unk
https://ascpt.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpsp4.12397&file=psp412397-sup-0004-DataS3.unk
https://ascpt.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpsp4.12397&file=psp412397-sup-0005-DataS4.unk
https://ascpt.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpsp4.12397&file=psp412397-sup-0006-DataS5.unk
https://ascpt.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpsp4.12397&file=psp412397-sup-0007-DataS6.unk
https://ascpt.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpsp4.12397&file=psp412397-sup-0008-SupplementS1.pdf
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Pharmazie
Professur: NT - Prof. Dr. Thorsten Lehr
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
psp4.12397.pdf1,41 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons