Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-33486
Volltext verfügbar? / Dokumentlieferung
Titel: Breakdown of continuum models for spherical probe adhesion tests on micropatterned surfaces
VerfasserIn: Bettscheider, Simon
Yu, Dan
Foster, Kimberly L.
McMeeking, Robert M.
Arzt, Eduard
Hensel, René
Booth, Jamie A.
Sprache: Englisch
Titel: Journal of the mechanics and physics of solids
Bandnummer: 150
Verlag/Plattform: Elsevier
Erscheinungsjahr: 2021
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: The adhesion of fibrillar dry adhesives, mimicking nature's principles of contact splitting, is commonly characterized by using axisymmetric probes having either a flat punch or spherical geometry. When using spherical probes, the adhesive pull-off force measured depends strongly on the compressive preload applied when making contact and on the geometry of the probe. Together, these effects complicate comparisons of the adhesive performance of micropatterned surfaces measured in different experiments. In this work we explore these issues, extending previous theoretical treatments of this problem by considering a fully compliant backing layer with an array of discrete elastic fibrils on its surface. We compare the results of the semi-analytical model presented to existing continuum theories, particularly with respect to determining a measurement system- and procedure-independent metric for the local adhesive strength of the fibrils from the global pull-off force. It is found that the discrete nature of the interface plays a dominant role across a broad range of relevant system parameters. Accordingly, a convenient tool for simulation of a discrete array is provided. An experimental procedure is recommended for use in conjunction with this tool in order to extract a value for the local adhesive strength of the fibrils, which is independent of the other system properties (probe radius, backing layer thickness, and preload) and thus is suitable for comparison across experimental studies.
DOI der Erstveröffentlichung: 10.1016/j.jmps.2021.104365
URL der Erstveröffentlichung: https://www.sciencedirect.com/science/article/pii/S0022509621000570
Link zu diesem Datensatz: hdl:20.500.11880/30784
http://dx.doi.org/10.22028/D291-33486
ISSN: 1873-4782
0022-5096
Datum des Eintrags: 2-Mär-2021
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Materialwissenschaft und Werkstofftechnik
Professur: NT - Prof. Dr. Eduard Arzt
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.