Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-32377
Titel: Comparison of Three Untargeted Data Processing Workflows for Evaluating LC-HRMS Metabolomics Data
VerfasserIn: Hemmer, Selina
Manier, Sascha K.
Fischmann, Svenja
Westphal, Folker
Wagmann, Lea
Meyer, Markus R.
Sprache: Englisch
Titel: Metabolites
Bandnummer: 10
Heft: 9
Verlag/Plattform: MDPI
Erscheinungsjahr: 2020
Freie Schlagwörter: untargeted metabolomics
LC-HRMS
data processing
feature detection
A-CHMINACA
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: The evaluation of liquid chromatography high-resolution mass spectrometry (LC-HRMS) raw data is a crucial step in untargeted metabolomics studies to minimize false positive findings. A variety of commercial or open source software solutions are available for such data processing. This study aims to compare three different data processing workflows (Compound Discoverer 3.1, XCMS Online combined with MetaboAnalyst 4.0, and a manually programmed tool using R) to investigate LC-HRMS data of an untargeted metabolomics study. Simple but highly standardized datasets for evaluation were prepared by incubating pHLM (pooled human liver microsomes) with the synthetic cannabinoid A-CHMINACA. LC-HRMS analysis was performed using normaland reversed-phase chromatography followed by full scan MS in positive and negative mode. MS/MS spectra of significant features were subsequently recorded in a separate run. The outcome of each workflow was evaluated by its number of significant features, peak shape quality, and the results of the multivariate statistics. Compound Discoverer as an all-in-one solution is characterized by its ease of use and seems, therefore, suitable for simple and small metabolomic studies. The two open source solutions allowed extensive customization but particularly, in the case of R, made advanced programming skills necessary. Nevertheless, both provided high flexibility and may be suitable for more complex studies and questions.
DOI der Erstveröffentlichung: 10.3390/metabo10090378
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-323771
hdl:20.500.11880/30445
http://dx.doi.org/10.22028/D291-32377
ISSN: 2218-1989
Datum des Eintrags: 26-Jan-2021
Bezeichnung des in Beziehung stehenden Objekts: Supplementary Materials
In Beziehung stehendes Objekt: http://www.mdpi.com/2218-1989/10/9/378/s1
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Experimentelle und Klinische Pharmakologie und Toxikologie
Professur: M - Prof. Dr. Markus Meyer
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
metabolites-10-00378-v2.pdf2,07 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons