Please use this identifier to cite or link to this item:
doi:10.22028/D291-32983
Title: | Approximation algorithms for network design and cut problems in bounded-treewidth |
Author(s): | Vaz, Daniel |
Language: | English |
Year of Publication: | 2020 |
DDC notations: | 510 Mathematics |
Publikation type: | Dissertation |
Abstract: | This thesis explores two optimization problems, the group Steiner tree and firefighter problems, which are known to be NP-hard even on trees. We study the approximability of these problems on trees and bounded-treewidth graphs. In the group Steiner tree, the input is a graph and sets of vertices called groups; the goal is to choose one representative from each group and connect all the representatives with minimum cost. We show an O(log^2 n)-approximation algorithm for bounded-treewidth graphs, matching the known lower bound for trees, and improving the best possible result using previous techniques. We also show improved approximation results for group Steiner forest, directed Steiner forest, and a fault-tolerant version of group Steiner tree. In the firefighter problem, we are given a graph and a vertex which is burning. At each time step, we can protect one vertex that is not burning; fire then spreads to all unprotected neighbors of burning vertices. The goal is to maximize the number of vertices that the fire does not reach. On trees, a classic (1-1/e)-approximation algorithm is known via LP rounding. We prove that the integrality gap of the LP matches this approximation, and show significant evidence that additional constraints may improve its integrality gap. On bounded-treewidth graphs, we show that it is NP-hard to find a subpolynomial approximation even on graphs of treewidth 5. We complement this result with an O(1)-approximation on outerplanar graphs. Diese Arbeit untersucht zwei Optimierungsprobleme, von welchen wir wissen, dass sie selbst in Bäumen NP-schwer sind. Wir analysieren Approximationen für diese Probleme in Bäumen und Graphen mit begrenzter Baumweite. Im Gruppensteinerbaumproblem, sind ein Graph und Mengen von Knoten (Gruppen) gegeben; das Ziel ist es, einen Knoten von jeder Gruppe mit minimalen Kosten zu verbinden. Wir beschreiben einen O(log^2 n)-Approximationsalgorithmus für Graphen mit beschränkter Baumweite, dies entspricht der zuvor bekannten unteren Schranke für Bäume und ist zudem eine Verbesserung über die bestmöglichen Resultate die auf anderen Techniken beruhen. Darüber hinaus zeigen wir verbesserte Approximationsresultate für andere Gruppensteinerprobleme. Im Feuerwehrproblem sind ein Graph zusammen mit einem brennenden Knoten gegeben. In jedem Zeitschritt können wir einen Knoten der noch nicht brennt auswählen und diesen vor dem Feuer beschützen. Das Feuer breitet sich anschließend zu allen Nachbarn aus. Das Ziel ist es die Anzahl der Knoten die vom Feuer unberührt bleiben zu maximieren. In Bäumen existiert ein lang bekannter (1-1/e)-Approximationsalgorithmus der auf LP Rundung basiert. Wir zeigen, dass die Ganzzahligkeitslücke des LP tatsächlich dieser Approximation entspricht, und dass weitere Einschränkungen die Ganzzahligkeitslücke möglicherweise verbessern könnten. Für Graphen mit beschränkter Baumweite zeigen wir, dass es NP-schwer ist, eine sub-polynomielle Approximation zu finden. |
Link to this record: | urn:nbn:de:bsz:291--ds-329830 hdl:20.500.11880/30394 http://dx.doi.org/10.22028/D291-32983 |
Advisor: | Mehlhorn, Kurt |
Date of oral examination: | 8-Dec-2020 |
Date of registration: | 19-Jan-2021 |
Faculty: | MI - Fakultät für Mathematik und Informatik |
Department: | MI - Informatik |
Professorship: | MI - Keiner Professur zugeordnet |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
File | Description | Size | Format | |
---|---|---|---|---|
vaz-daniel-thesis.pdf | 1,68 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License