Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-32884
Titel: | Learning the language of apps |
VerfasserIn: | Pereira Borges Junior, Nataniel |
Sprache: | Englisch |
Erscheinungsjahr: | 2020 |
DDC-Sachgruppe: | 004 Informatik |
Dokumenttyp: | Dissertation |
Abstract: | To explore the functionality of an app, automated test generators systematically identify and interact with its user interface (UI) elements. A key challenge is to synthesize inputs which effectively and efficiently cover app behavior. To do so, a test generator has to choose which elements to interact with but, which interactions to do on each element and which input values to type. In summary, to better test apps, a test generator should know the app's language, that is, the language of its graphical interactions and the language of its textual inputs. In this work, we show how a test generator can learn the language of apps and how this knowledge is modeled to create tests. We demonstrate how to learn the language of the graphical input prior to testing by combining machine learning and static analysis, and how to refine this knowledge during testing using reinforcement learning. In our experiments, statically learned models resulted in 50\% less ineffective actions an average increase in test (code) coverage of 19%, while refining these through reinforcement learning resulted in an additional test (code) coverage of up to 20%. We learn the language of textual inputs, by identifying the semantics of input fields in the UI and querying the web for real-world values. In our experiments, real-world values increase test (code) coverage ~10%; Finally, we show how to use context-free grammars to integrate both languages into a single representation (UI grammar), giving back control to the user. This representation can then be: mined from existing tests, associated to the app source code, and used to produce new tests. 82% test cases produced by fuzzing our UI grammar can reach a UI element within the app and 70% of them can reach a specific code location. Automatisierte Testgeneratoren identifizieren systematisch Elemente der Benutzeroberfläche und interagieren mit ihnen, um die Funktionalität einer App zu erkunden. Eine wichtige Herausforderung besteht darin, Eingaben zu synthetisieren, die das App-Verhalten effektiv und effizient abdecken. Dazu muss ein Testgenerator auswählen, mit welchen Elementen interagiert werden soll, welche Interaktionen jedoch für jedes Element ausgeführt werden sollen und welche Eingabewerte eingegeben werden sollen. Um Apps besser testen zu können, sollte ein Testgenerator die Sprache der App kennen, dh die Sprache ihrer grafischen Interaktionen und die Sprache ihrer Texteingaben. In dieser Arbeit zeigen wir, wie ein Testgenerator die Sprache von Apps lernen kann und wie dieses Wissen modelliert wird, um Tests zu erstellen. Wir zeigen, wie die Sprache der grafischen Eingabe lernen vor dem Testen durch maschinelles Lernen und statische Analyse kombiniert und wie dieses Wissen weiter verfeinern beim Testen Verstärkung Lernen verwenden. In unseren Experimenten führten statisch erlernte Modelle zu 50% weniger ineffektiven Aktionen, was einer durchschnittlichen Erhöhung der Testabdeckung (Code) von 19% entspricht, während die Verfeinerung dieser durch verstärkendes Lernen zu einer zusätzlichen Testabdeckung (Code) von bis zu 20% führte. Wir lernen die Sprache der Texteingaben, indem wir die Semantik der Eingabefelder in der Benutzeroberfläche identifizieren und das Web nach realen Werten abfragen. In unseren Experimenten erhöhen reale Werte die Testabdeckung (Code) um ca. 10%; Schließlich zeigen wir, wie kontextfreien Grammatiken verwenden beide Sprachen in einer einzigen Darstellung (UI Grammatik) zu integrieren, wieder die Kontrolle an den Benutzer zu geben. Diese Darstellung kann dann: aus vorhandenen Tests gewonnen, dem App-Quellcode zugeordnet und zur Erstellung neuer Tests verwendet werden. 82% Testfälle, die durch Fuzzing unserer UI-Grammatik erstellt wurden, können ein UI-Element in der App erreichen, und 70% von ihnen können einen bestimmten Code-Speicherort erreichen. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-328846 hdl:20.500.11880/30334 http://dx.doi.org/10.22028/D291-32884 |
Erstgutachter: | Zeller, Andreas |
Tag der mündlichen Prüfung: | 26-Nov-2020 |
Datum des Eintrags: | 8-Jan-2021 |
EU-Projektnummer: | info:eu-repo/grantAgreement/EC/H2020/737566/EU//Boxmate |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Informatik |
Professur: | MI - Prof. Dr. Andreas Zeller |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
thesis.pdf | Dissertation from Nataniel Pereira Borges Junior submitted to the Faculty of Mathematics and Computer Science of Saarland University | 10,4 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons