Please use this identifier to cite or link to this item: doi:10.22028/D291-32846
Title: Real-time 3D hand reconstruction in challenging scenes from a single color or depth camera
Author(s): Müller, Franziska
Language: English
Year of Publication: 2020
DDC notations: 004 Computer science, internet
Publikation type: Doctoral Thesis
Abstract: Hands are one of the main enabling factors for performing complex tasks and humans naturally use them for interactions with their environment. Reconstruction and digitization of 3D hand motion opens up many possibilities for important applications. Hands gestures can be directly used for human–computer interaction, which is especially relevant for controlling augmented or virtual reality (AR/VR) devices where immersion is of utmost importance. In addition, 3D hand motion capture is a precondition for automatic sign-language translation, activity recognition, or teaching robots. Different approaches for 3D hand motion capture have been actively researched in the past. While being accurate, gloves and markers are intrusive and uncomfortable to wear. Hence, markerless hand reconstruction based on cameras is desirable. Multi-camera setups provide rich input, however, they are hard to calibrate and lack the flexibility for mobile use cases. Thus, the majority of more recent methods uses a single color or depth camera which, however, makes the problem harder due to more ambiguities in the input. For interaction purposes, users need continuous control and immediate feedback. This means the algorithms have to run in real time and be robust in uncontrolled scenes. These requirements, achieving 3D hand reconstruction in real time from a single camera in general scenes, make the problem significantly more challenging. While recent research has shown promising results, current state-of-the-art methods still have strong limitations. Most approaches only track the motion of a single hand in isolation and do not take background-clutter or interactions with arbitrary objects or the other hand into account. The few methods that can handle more general and natural scenarios run far from real time or use complex multi-camera setups. Such requirements make existing methods unusable for many aforementioned applications. This thesis pushes the state of the art for real-time 3D hand tracking and reconstruction in general scenes from a single RGB or depth camera. The presented approaches explore novel combinations of generative hand models, which have been used successfully in the computer vision and graphics community for decades, and powerful cutting-edge machine learning techniques, which have recently emerged with the advent of deep learning. In particular, this thesis proposes a novel method for hand tracking in the presence of strong occlusions and clutter, the first method for full global 3D hand tracking from in-the-wild RGB video, and a method for simultaneous pose and dense shape reconstruction of two interacting hands that, for the first time, combines a set of desirable properties previously unseen in the literature.
Hände sind einer der Hauptfaktoren für die Ausführung komplexer Aufgaben, und Menschen verwenden sie auf natürliche Weise für Interaktionen mit ihrer Umgebung. Die Rekonstruktion und Digitalisierung der 3D-Handbewegung eröffnet viele Möglichkeiten für wichtige Anwendungen. Handgesten können direkt als Eingabe für die Mensch-Computer-Interaktion verwendet werden. Dies ist insbesondere für Geräte der erweiterten oder virtuellen Realität (AR / VR) relevant, bei denen die Immersion von größter Bedeutung ist. Darüber hinaus ist die Rekonstruktion der 3D Handbewegung eine Voraussetzung zur automatischen Übersetzung von Gebärdensprache, zur Aktivitätserkennung oder zum Unterrichten von Robotern. In der Vergangenheit wurden verschiedene Ansätze zur 3D-Handbewegungsrekonstruktion aktiv erforscht. Handschuhe und physische Markierungen sind zwar präzise, aber aufdringlich und unangenehm zu tragen. Daher ist eine markierungslose Handrekonstruktion auf der Basis von Kameras wünschenswert. Multi-Kamera-Setups bieten umfangreiche Eingabedaten, sind jedoch schwer zu kalibrieren und haben keine Flexibilität für mobile Anwendungsfälle. Daher verwenden die meisten neueren Methoden eine einzelne Farb- oder Tiefenkamera, was die Aufgabe jedoch schwerer macht, da mehr Ambiguitäten in den Eingabedaten vorhanden sind. Für Interaktionszwecke benötigen Benutzer kontinuierliche Kontrolle und sofortiges Feedback. Dies bedeutet, dass die Algorithmen in Echtzeit ausgeführt werden müssen und robust in unkontrollierten Szenen sein müssen. Diese Anforderungen, 3D-Handrekonstruktion in Echtzeit mit einer einzigen Kamera in allgemeinen Szenen, machen das Problem erheblich schwieriger. Während neuere Forschungsarbeiten vielversprechende Ergebnisse gezeigt haben, weisen aktuelle Methoden immer noch Einschränkungen auf. Die meisten Ansätze verfolgen die Bewegung einer einzelnen Hand nur isoliert und berücksichtigen keine alltäglichen Umgebungen oder Interaktionen mit beliebigen Objekten oder der anderen Hand. Die wenigen Methoden, die allgemeinere und natürlichere Szenarien verarbeiten können, laufen nicht in Echtzeit oder verwenden komplexe Multi-Kamera-Setups. Solche Anforderungen machen bestehende Verfahren für viele der oben genannten Anwendungen unbrauchbar. Diese Dissertation erweitert den Stand der Technik für die Echtzeit-3D-Handverfolgung und -Rekonstruktion in allgemeinen Szenen mit einer einzelnen RGB- oder Tiefenkamera. Die vorgestellten Algorithmen erforschen neue Kombinationen aus generativen Handmodellen, die seit Jahrzehnten erfolgreich in den Bereichen Computer Vision und Grafik eingesetzt werden, und leistungsfähigen innovativen Techniken des maschinellen Lernens, die vor kurzem mit dem Aufkommen neuronaler Netzwerke entstanden sind. In dieser Arbeit werden insbesondere vorgeschlagen: eine neuartige Methode zur Handbewegungsrekonstruktion bei starken Verdeckungen und in unkontrollierten Szenen, die erste Methode zur Rekonstruktion der globalen 3D Handbewegung aus RGB-Videos in freier Wildbahn und die erste Methode zur gleichzeitigen Rekonstruktion von Handpose und -form zweier interagierender Hände, die eine Reihe wünschenwerter Eigenschaften komibiniert.
Link to this record: urn:nbn:de:bsz:291--ds-328467
hdl:20.500.11880/30313
http://dx.doi.org/10.22028/D291-32846
Advisor: Theobalt, Christian
Date of oral examination: 2-Dec-2020
Date of registration: 6-Jan-2021
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Professorship: MI - Keiner Professur zugeordnet
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
Dissertation_FranziskaMueller_final.pdf95,01 MBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.