Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-32390
Titel: | Learning from limited labeled data - Zero-Shot and Few-Shot Learning |
VerfasserIn: | Xian, Yongqin |
Sprache: | Englisch |
Erscheinungsjahr: | 2020 |
Freie Schlagwörter: | few-shot learning zero-shot learning |
DDC-Sachgruppe: | 600 Technik 004 Informatik |
Dokumenttyp: | Dissertation |
Abstract: | Human beings have the remarkable ability to recognize novel visual concepts after observing only few or zero examples of them. Deep learning, however, often requires a large amount of labeled data to achieve a good performance. Labeled instances are expensive, difficult and even infeasible to obtain because the distribution of training instances among labels naturally exhibits a long tail. Therefore, it is of great interest to investigate how to learn efficiently from limited labeled data.
This thesis concerns an important subfield of learning from limited labeled data, namely, low-shot learning. The setting assumes the availability of many labeled examples from known classes and the goal is to learn novel classes from only a few~(few-shot learning) or zero~(zero-shot learning) training examples of them. To this end, we have developed a series of multi-modal learning approaches to facilitate the knowledge transfer from known classes to novel classes for a wide range of visual recognition tasks including image classification, semantic image segmentation and video action recognition. More specifically, this thesis mainly makes the following contributions. First, as there is no agreed upon zero-shot image classification benchmark, we define a new benchmark by unifying both the evaluation protocols and data splits of publicly available datasets. Second, in order to tackle the labeled data scarcity, we propose feature generation frameworks that synthesize data in the visual feature space for novel classes. Third, we extend zero-shot learning and few-shot learning to the semantic segmentation task and propose a challenging benchmark for it. We show that incorporating semantic information into a semantic segmentation network is effective in segmenting novel classes. Finally, we develop better video representation for the few-shot video classification task and leverage weakly-labeled videos by an efficient retrieval method. Menschen haben die bemerkenswerte Fähigkeit, neuartige visuelle Konzepte zu erkennen, nachdem sie nur wenige oder gar keine Beispiele davon beobachtet haben. Tiefes Lernen erfordert jedoch oft eine große Menge an beschrifteten Daten, um eine gute Leistung zu erzielen. Etikettierte Instanzen sind teuer, schwierig und sogar undurchführbar, weil die Verteilung der Trainingsinstanzen auf die Etiketten naturgemäß einen langen Schwanz aufweist. Daher ist es von großem Interesse zu untersuchen, wie man effizient aus begrenzten gelabelten Daten lernen kann. Diese These betrifft einen wichtigen Teilbereich des Lernens aus begrenzt gelabelten Daten, nämlich das Low-Shot-Lernen. Das Setting setzt die Verfügbarkeit vieler gelabelter Beispiele aus bekannten Klassen voraus, und das Ziel ist es, neuartige Klassen aus nur wenigen (few-shot learning) oder null (zero-shot learning) Trainingsbeispielen davon zu lernen. Zu diesem Zweck haben wir eine Reihe von multimodalen Lernansätzen entwickelt, um den Wissenstransfer von bekannten Klassen zu neuartigen Klassen für ein breites Spektrum von visuellen Erkennungsaufgaben zu erleichtern, darunter Bildklassifizierung, semantische Bildsegmentierung und Videoaktionserkennung. Genauer gesagt, leistet diese Arbeit hauptsächlich die folgenden Beiträge. Da es keinen vereinbarten Benchmark für die Zero-Shot- Bildklassifikation gibt, definieren wir zunächst einen neuen Benchmark, indem wir sowohl die Evaluierungsprotokolle als auch die Datensplits öffentlich zugänglicher Datensätze vereinheitlichen. Zweitens schlagen wir zur Bewältigung der etikettierten Datenknappheit einen Rahmen für die Generierung von Merkmalen vor, der Daten im visuellen Merkmalsraum für neuartige Klassen synthetisiert. Drittens dehnen wir das Zero-Shot-Lernen und das few-Shot-Lernen auf die semantische Segmentierungsaufgabe aus und schlagen dafür einen anspruchsvollen Benchmark vor. Wir zeigen, dass die Einbindung semantischer Informationen in ein semantisches Segmentierungsnetz bei der Segmentierung neuartiger Klassen effektiv ist. Schließlich entwickeln wir eine bessere Videodarstellung für die Klassifizierungsaufgabe ”few-shot video” und nutzen schwach markierte Videos durch eine effiziente Abrufmethode. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-323903 hdl:20.500.11880/29855 http://dx.doi.org/10.22028/D291-32390 |
Erstgutachter: | Schiele, Bernt |
Tag der mündlichen Prüfung: | 7-Jul-2020 |
Datum des Eintrags: | 13-Okt-2020 |
Drittmittel / Förderung: | Max Planck Institute Informatics |
Bezeichnung des in Beziehung stehenden Objekts: | This is the PhD thesis of Yongqin Xian |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Informatik |
Professur: | MI - Keiner Professur zugeordnet |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
yongqin_phd_thesis.pdf | PhD thesis of Yongqin Xian | 14,47 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons