Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-31492
Titel: | Extracellular vesicles protect glucuronidase model enzymes during freeze-drying |
VerfasserIn: | Frank, Julia Richter, Maximilian de Rossi, Chiara Lehr, Claus-Michael Fuhrmann, Kathrin Fuhrmann, Gregor |
Sprache: | Englisch |
Titel: | Scientific reports |
Bandnummer: | 8 |
Heft: | 1 |
Verlag/Plattform: | SpringerNature |
Erscheinungsjahr: | 2018 |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | Extracellular vesicles (EVs) are natural nanoparticles that play important roles in intercellular communication and are increasingly studied for biosignalling, pathogenesis and therapy. Nevertheless, little is known about optimal conditions for their transfer and storage, and the potential impact on preserving EV-loaded cargoes. We present the first comprehensive stability assessment of different widely available types of EVs during various storage conditions including -80 °C, 4 °C, room temperature, and freeze-drying (lyophilisation). Lyophilisation of EVs would allow easy handling at room temperature and thus significantly enhance their expanded investigation. A model enzyme, β-glucuronidase, was loaded into different types of EVs derived from mesenchymal stem cells, endothelial cells and cancer cells. Using asymmetric flow field-flow fractionation we proved that the model enzyme is indeed stably encapsulated into EVs. When assessing enzyme activity as indicator for EV stability, and in comparison to liposomes, we show that EVs are intrinsically stable during lyophilisation, an effect further enhanced by cryoprotectants. Our findings provide new insight for exploring lyophilisation as a novel storage modality and we create an important basis for standardised and advanced EV applications in biomedical research. |
DOI der Erstveröffentlichung: | 10.1038/s41598-018-30786-y |
URL der Erstveröffentlichung: | https://www.nature.com/articles/s41598-018-30786-y |
Link zu diesem Datensatz: | hdl:20.500.11880/29427 http://dx.doi.org/10.22028/D291-31492 |
ISSN: | 2045-2322 |
Datum des Eintrags: | 14-Jul-2020 |
Fakultät: | NT - Naturwissenschaftlich- Technische Fakultät |
Fachrichtung: | NT - Pharmazie |
Professur: | NT - Prof. Dr. Claus-Michael Lehr |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.