Please use this identifier to cite or link to this item: doi:10.22028/D291-30855
Volltext verfügbar? / Dokumentlieferung
Title: Optimizing Ni–Ti-based shape memory alloys for ferroic cooling
Author(s): Wieczorek, Andrzej
Frenzel, Jan
Schmidt, Maarten
Maaß, Burkhard
Seelecke, Stefan
Schütze, Andreas
Eggeler, Gunther
Language: English
Title: Functional materials letters : FML
Volume: 10
Issue: 01
Pages: 8
Publisher/Platform: World Scientific
Year of Publication: 2017
Publikation type: Journal Article
Abstract: Due to their large latent heats, pseudoelastic Ni–Ti-based shape memory alloys (SMAs) are attractive candidate materials for ferroic cooling, where elementary solid-state processes like martensitic transformations yield the required heat effects. The present work aims for a chemical and microstructural optimization of Ni–Ti for ferroic cooling. A large number of Ni–Ti-based alloy compositions were evaluated in terms of phase transformation temperatures, latent heats, mechanical hysteresis widths and functional stability. The aim was to identify material states with superior properties for ferroic cooling. Different material states were prepared by arc melting, various heat treatments and thermo-mechanical processing. The cooling performance of selected materials was assessed by differential scanning calorimetry, uniaxial tensile loading/unloading, and by using a specially designed ferroic cooling demonstrator setup. A Ni45Ti47.25Cu5V2.75 SMA was identified as a potential candidate material for ferroic cooling. This material combines extremely stable pseudoelasticity at room temperature and a very low hysteresis width. The ferroic cooling efficiency of this material is four times higher than in the case of binary Ni–Ti.
DOI of the first publication: 10.1142/S179360471740001X
URL of the first publication:
Link to this record: hdl:20.500.11880/29091
ISSN: 1793-7213
Date of registration: 5-May-2020
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Systems Engineering
Professorship: NT - Prof. Dr. Stefan Seelecke
Collections:UniBib – Die Universitätsbibliographie

Files for this record:
There are no files associated with this item.

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.