Please use this identifier to cite or link to this item: doi:10.22028/D291-30163
Title: Script acquisition : a crowdsourcing and text mining approach
Author(s): Wanzare, Lilian Diana Awuor
Language: English
Year of Publication: 2020
Free key words: natural language understanding
script knowledge
crowdwourcing
text classification
annotation
DDC notations: 400 Language, linguistics
420 English
Publikation type: Dissertation
Abstract: According to Grice’s (1975) theory of pragmatics, people tend to omit basic information when participating in a conversation (or writing a narrative) under the assumption that left out details are already known or can be inferred from commonsense knowledge by the hearer (or reader). Writing and understanding of texts makes particular use of a specific kind of common-sense knowledge, referred to as script knowledge. Schank and Abelson (1977) proposed Scripts as a model of human knowledge represented in memory that stores the frequent habitual activities, called scenarios, (e.g. eating in a fast food restaurant, etc.), and the different courses of action in those routines. This thesis addresses measures to provide a sound empirical basis for high-quality script models. We work on three key areas related to script modeling: script knowledge acquisition, script induction and script identification in text. We extend the existing repository of script knowledge bases in two different ways. First, we crowdsource a corpus of 40 scenarios with 100 event sequence descriptions (ESDs) each, thus going beyond the size of previous script collections. Second, the corpus is enriched with partial alignments of ESDs, done by human annotators. The crowdsourced partial alignments are used as prior knowledge to guide the semi-supervised script-induction algorithm proposed in this dissertation. We further present a semi-supervised clustering approach to induce script structure from crowdsourced descriptions of event sequences by grouping event descriptions into paraphrase sets and inducing their temporal order. The proposed semi-supervised clustering model better handles order variation in scripts and extends script representation formalism, Temporal Script graphs, by incorporating "arbitrary order" equivalence classes in order to allow for the flexible event order inherent in scripts. In the third part of this dissertation, we introduce the task of scenario detection, in which we identify references to scripts in narrative texts. We curate a benchmark dataset of annotated narrative texts, with segments labeled according to the scripts they instantiate. The dataset is the first of its kind. The analysis of the annotation shows that one can identify scenario references in text with reasonable reliability. Subsequently, we proposes a benchmark model that automatically segments and identifies text fragments referring to given scenarios. The proposed model achieved promising results, and therefore opens up research on script parsing and wide coverage script acquisition.
Gemäß der Grice’schen (1975) Pragmatiktheorie neigen Menschen dazu, grundlegende Informationen auszulassen, wenn sie an einem Gespräch teilnehmen (oder eine Geschichte schreiben). Dies geschieht unter der Annahme, dass die ausgelassenen Details bereits bekannt sind, oder vom Hörer (oder Leser) aus Weltwissen erschlossen werden können. Besonders beim Schreiben und Verstehen von Text wird Verwendung einer spezifischen Art von solchem Weltwissen gemacht, welches auch Skriptwissen genannt wird. Schank und Abelson (1977) erdachten Skripte als ein Modell menschlichen Wissens, welches im menschlichen Gedächtnis gespeichert ist und häufige Alltags-Aktivitäten sowie deren typischen Ablauf beinhaltet. Solche Skript-Aktivitäten werden auch als Szenarios bezeichnet und umfassen zum Beispiel Im Restaurant Essen etc. Diese Dissertation widmet sich der Bereitstellung einer soliden empirischen Grundlage zur Akquisition qualitativ hochwertigen Skriptwissens. Wir betrachten drei zentrale Aspekte im Bereich der Skriptmodellierung: Akquisition ition von Skriptwissen, Skript-Induktion und Skriptidentifizierung in Text. Wir erweitern das bereits bestehende Repertoire und Skript-Datensätzen in 2 Bereichen. Erstens benutzen wir Crowdsourcing zur Erstellung eines Korpus, das 40 Szenarien mit jeweils 100 Ereignissequenzbeschreibungen (Event Sequence Descriptions, ESDs) beinhaltet, und welches somit größer als bestehende Skript- Datensätze ist. Zweitens erweitern wir das Korpus mit partiellen ESD-Alignierungen, die von Hand annotiert werden. Die partiellen Alignierungen werden dann als Vorwissen für einen halbüberwachten Algorithmus zur Skriptinduktion benutzt, der im Rahmen dieser Dissertation vorgestellt wird. Wir präsentieren außerdem einen halbüberwachten Clusteringansatz zur Induktion von Skripten, basierend auf Ereignissequenzen, die via Crowdsourcing gesammelt wurden. Hierbei werden einzelne Ereignisbeschreibungen gruppiert, um Paraphrasenmengen und der deren temporale Ordnung abzuleiten. Der vorgestellte Clusteringalgorithmus ist im Stande, Variationen in der typischen Reihenfolge in Skripte besser abzubilden und erweitert damit einen Formalismus zur Skriptrepräsentation, temporale Skriptgraphen. Dies wird dadurch bewerkstelligt, dass Equivalenzklassen von Beschreibungen mit "arbiträrer Reihenfolge" genutzt werden, die es erlauben, eine flexible Ereignisordnung abzubilden, die inhärent bei Skripten vorhanden ist. Im dritten Teil der vorliegenden Arbeit führen wir den Task der SzenarioIdentifikation ein, also der automatischen Identifikation von Skriptreferenzen in narrativen Texten. Wir erstellen einen Benchmark-Datensatz mit annotierten narrativen Texten, in denen einzelne Segmente im Bezug auf das Skript, welches sie instantiieren, markiert wurden. Dieser Datensatz ist der erste seiner Art. Eine Analyse der Annotation zeigt, dass Referenzen zu Szenarien im Text mit annehmbarer Akkuratheit vorhergesagt werden können. Zusätzlich stellen wir ein Benchmark-Modell vor, welches Textfragmente automatisch erstellt und deren Szenario identifiziert. Das vorgestellte Modell erreicht erfolgversprechende Resultate und öffnet damit einen Forschungszweig im Bereich des Skript-Parsens und der Skript-Akquisition im großen Stil.
Link to this record: urn:nbn:de:bsz:291--ds-301634
hdl:20.500.11880/28630
http://dx.doi.org/10.22028/D291-30163
Advisor: Pinkal, Manfred
Date of oral examination: 19-Dec-2019
Date of registration: 23-Jan-2020
Faculty: P - Philosophische Fakultät
Department: P - Sprachwissenschaft und Sprachtechnologie
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
thesis.pdfScript Acquisition: A Crowdourcing and Text mining approach.6,73 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons