Please use this identifier to cite or link to this item: doi:10.22028/D291-29774
Volltext verfügbar? / Dokumentlieferung
Title: Entropy Can Bundle Nanowires in Good Solvents
Author(s): Gao, Hongyu
Bettscheider, Simon
Kraus, Tobias
Müser, Martin H.
Language: English
Title: Nano letters : a journal dedicated to nanoscience and nanotechnology
Volume: 19
Issue: 10
Startpage: 6993
Endpage: 6999
Publisher/Platform: ACS
Year of Publication: 2019
Publikation type: Journal Article
Abstract: Surfaces with surface-bound ligand molecules generally attract each other when immersed in poor solvents but repel each other in good solvents. While this common wisdom holds, for example, for oleylamine-ligated ultrathin nanowires in the poor solvent ethanol, the same nanowires were recently observed experimentally to bundle even when immersed in the good solvent n-hexane. To elucidate the respective binding mechanisms, we simulate both systems using molecular dynamics. In the case of ethanol, the solvent is completely depleted at the interface between two ligand shells so that their binding occurs, as expected, via direct interactions between ligands. In the case of n-hexane, ligands attached to different nanowires do not touch. The binding occurs because solvent molecules penetrating the shells preferentially orient their backbone normal to the wire, whereby they lose entropy. This entropy does not have to be summoned a second time when the molecules penetrate another nanowire. For the mechanism to be effective, the ligand density appears to best be intermediate, that is, small enough to allow solvent molecules to penetrate, but not so small that ligands do not possess a clear preferred orientation at the interface to the solvent. At the same time, solvent molecules may be neither too large nor too small for similar reasons. Experiments complementing the simulations confirm the predicted trends.
DOI of the first publication: 10.1021/acs.nanolett.9b02379
URL of the first publication: https://pubs.acs.org/doi/10.1021/acs.nanolett.9b02379
Link to this record: hdl:20.500.11880/28198
http://dx.doi.org/10.22028/D291-29774
ISSN: 1530-6984
1530-6992
Date of registration: 25-Oct-2019
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Chemie
Professorship: NT - Prof. Dr. Tobias Kraus
Collections:UniBib – Die Universitätsbibliographie

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.