Please use this identifier to cite or link to this item: doi:10.22028/D291-29597
Volltext verfügbar? / Dokumentlieferung
Title: Development of a fast and precise method for simultaneous quantification of the PLGA monomers lactic and glycolic acid by HPLC
Author(s): Pourasghar, Marcel
Koenneke, Aljoscha
Meiers, Peter
Schneider, Marc
Language: English
Title: Journal of pharmaceutical analysis : JPA
Volume: 9
Issue: 2
Startpage: 100
Endpage: 107
Publisher/Platform: Elsevier
Year of Publication: 2019
Publikation type: Journal Article
Abstract: Poly(lactide-co-glycolide acid) (PLGA) is an extraordinary well-described polymer and has excellent pharmaceutical properties like high biocompatibility and good biodegradability. Hence, it is one of the most used materials for drug delivery and biomedical systems, also being present in several US Food and Drug Administration-approved carrier systems and therapeutic devices. For both applications, the quantification of the polymer is inalienable. During the development of a production process, parameters like yield or loading efficacy are essential to be determined. Although PLGA is a well-defined biomaterial, it still lacks a sensitive and convenient quantification approach for PLGA-based systems. Thus, we present a novel method for the fast and precise quantification of PLGA by RP-HPLC. The polymer is hydrolyzed into its monomers, glycolic acid and lactic acid. Afterwards, the monomers are derivatized with the absorption-enhancing molecule 2,4'-dibromoacetophenone. Furthermore, the wavelength of the derivatized monomers is shifted to higher wavelengths, where the used solvents show a lower absorption, increasing the sensitivity and detectability. The developed method has a detection limit of 0.1 µg/mL, enabling the quantification of low amounts of PLGA. By quantifying both monomers separately, information about the PLGA monomer ratio can be also directly obtained, being relevant for degradation behavior. Compared to existing approaches, like gravimetric or nuclear magnetic resonance measurements, which are tedious or expensive, the developed method is fast, ideal for routine screening, and it is selective since no stabilizer or excipient is interfering. Due to the high sensitivity and rapidity of the method, it is suitable for both laboratory and industrial uses.
DOI of the first publication: 10.1016/j.jpha.2019.01.004
URL of the first publication:
Link to this record: hdl:20.500.11880/27983
ISSN: 2095-1779
Date of registration: 1-Oct-2019
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Pharmazie
Professorship: NT - Prof. Dr. Marc Schneider
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.