Please use this identifier to cite or link to this item: doi:10.22028/D291-28991
Volltext verfügbar? / Dokumentlieferung
Title: Colloidal Stability of Apolar Nanoparticles: The Role of Particle Size and Ligand Shell Structure
Author(s): Kister, Thomas
Monego, Debora
Mulvaney, Paul
Widmer-Cooper, Asaph
Kraus, Tobias
Language: English
Title: ACS nano
Volume: 12
Issue: 6
Startpage: 5969
Endpage: 5977
Publisher/Platform: ACS
Year of Publication: 2019
Publikation type: Journal Article
Abstract: Being able to predict and tune the colloidal stability of nanoparticles is essential for a wide range of applications, yet our ability to do so is currently poor due to a lack of understanding of how they interact with one another. Here, we show that the agglomeration of apolar particles is dominated by either the core or the ligand shell depending on the particle size and materials. We do this by using small-angle X-ray scattering and molecular dynamics simulations to characterize the interaction between hexadecanethiol passivated gold nanoparticles in decane solvent. For smaller particles, the agglomeration temperature and interparticle spacing are determined by ordering of the ligand shell into bundles of aligned ligands that attract one another and interlock. In contrast, the agglomeration of larger particles is driven by van der Waals attraction between the gold cores, which eventually becomes strong enough to compress the ligand shell. Our results provide a microscopic description of the forces that determine the colloidal stability of apolar nanoparticles and explain why classical colloid theory fails.
DOI of the first publication: 10.1021/acsnano.8b02202
URL of the first publication:
Link to this record: hdl:20.500.11880/27936
ISSN: 1936-0851
Date of registration: 27-Sep-2019
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Chemie
Professorship: NT - Prof. Dr. Tobias Kraus
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.