Please use this identifier to cite or link to this item: doi:10.22028/D291-28661
Title: Matrix factorization over dioids and its applications in data mining
Author(s): Karaev, Sanjar
Language: English
Year of Publication: 2019
Place of publication: Saarbrücken
DDC notations: 600 Technology
Publikation type: Doctoral Thesis
Abstract: Matrix factorizations are an important tool in data mining, and they have been used extensively for finding latent patterns in the data. They often allow to separate structure from noise, as well as to considerably reduce the dimensionality of the input matrix. While classical matrix decomposition methods, such as nonnegative matrix factorization (NMF) and singular value decomposition (SVD), proved to be very useful in data analysis, they are limited by the underlying algebraic structure. NMF, in particular, tends to break patterns into smaller bits, often mixing them with each other. This happens because overlapping patterns interfere with each other, making it harder to tell them apart. In this thesis we study matrix factorization over algebraic structures known as dioids, which are characterized by the lack of additive inverse (“negative numbers”) and the idempotency of addition (a + a = a). Using dioids makes it easier to separate overlapping features, and, in particular, it allows to better deal with the above mentioned pattern breaking problem. We consider different types of dioids, that range from continuous (subtropical and tropical algebras) to discrete (Boolean algebra). Among these, the Boolean algebra is perhaps the most well known, and there exist methods that allow one to obtain high quality Boolean matrix factorizations in terms of the reconstruction error. In this work, however, a different objective function is used – the description length of the data, which enables us to obtain compact and highly interpretable results. The tropical and subtropical algebras, on the other hand, are much less known in the data mining field. While they find applications in areas such as job scheduling and discrete event systems, they are virtually unknown in the context of data analysis. We will use them to obtain idempotent nonnegative factorizations that are similar to NMF, but are better at separating the most prominent features of the data.
Matrix-Faktorisierungen sind ein wichtiges Werkzeug in Data-Mining und wurden umfangreich zum Auffinden latenter Muster in den Daten verwendet. Oft erlauben sie, die Struktur vom Rauschen zu trennen, sowie Dimensionalität von der Eingabematrix wesentlich zu reduzieren. Obwohl klassische Methoden für die Matrix-Zerlegung, wie z.B. nicht negative Matrixfaktorisierung (NMF) und Singulärwertzerlegung (SVD), in der Datenanalyse sich als sehr nützlich erwiesen haben, sind sie durch die zugrunde liegende algebraische Struktur eingeschränkt. Insbesondere neigt NMF dazu, Muster in kleinere Bits zu brechen, und vermischt sie oft miteinander. Das passiert, weil überschneidende Muster sich gegenseitig stören, sodass es schwieriger ist, sie auseinander zu halten. In dieser Dissertation werden Matrix-Faktorisierungen über algebraische Strukturen, sogenannte Dioiden, untersucht, die sich durch die fehlende additive Inverse (“negative Zahlen”) und Idempotenz der Addition (a + a = a) auszeichnen. Mit Dioiden ist es einfacher überschneidende Merkmale zu trennen. Insbesondere erlauben sie besser mit dem erwähnten Musterbrechenproblem umzugehen. Es werden unterschiedliche Dioiden untersucht, die von kontinuierlichen (subtropische und tropische Algebren) bis zu diskreter (Boolesche Algebra) reichen. Unter diesen, die Boolesche Algebra ist wahrscheinlich die bekannteste, und es gibt Methoden, die ermöglichen hochwertiger Matrix-Faktorisierungen in Bezug auf den Rekonstruktionsfehler zu erzielen. In dieser Arbeit aber wird eine andere Zielfunktion verwendet: Die Länge der Beschreibung von den Daten. Die Zielfunktion ermöglicht uns kompakte und hochinterpretierbare Ergebnisse zu erzielen. Andererseits sind die tropische und subtropische Algebren viel weniger im Bereich Data-Mining bekannt. Sie finden zwar Anwendungen in Bereichen wie Job-Scheduling und diskrete Ereignissysteme, jedoch sind sie im Kontext von Datenanalyse nahezu unbekannt. Hier werden sie verwendet, um idempotente, nicht negative Faktorisierungen zu erhalten, die NMF ähneln, aber die wichtigsten Merkmale der Daten besser voneinander trennen.
Link to this record: urn:nbn:de:bsz:291--ds-286619
hdl:20.500.11880/27903
http://dx.doi.org/10.22028/D291-28661
Advisor: Miettinen, Pauli
Date of oral examination: 10-Jul-2019
Date of registration: 26-Sep-2019
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
thesis.pdf16,32 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons