Please use this identifier to cite or link to this item: doi:10.22028/D291-28428
Title: Decidable fragments of first-order logic and of first-order linear arithmetic with uninterpreted predicates
Author(s): Voigt, Marco
Language: English
Year of Publication: 2019
SWD key words: computational complexity
Mathematische Logik
Entscheidbarkeit
Berechnungskomplexität
Free key words: decidable fragments of first-order logic
classical decision problem
model-checking games
weak dependences
Craig interpolation
Lyndon interpolation
linear rational arithmetic
Presburger arithmetic
combination of theories
mathematical logic
first-order logic
decidability
Prädikatenlogik / Stufe 1
DDC notations: 004 Computer science, internet
Publikation type: Doctoral Thesis
Abstract: First-order logic is one of the most prominent formalisms in computer science and mathematics. Since there is no algorithm capable of solving its satisfiability problem, first-order logic is said to be undecidable. The classical decision problem is the quest for a delineation between the decidable and the undecidable parts. The results presented in this thesis shed more light on the boundary and open new perspectives on the landscape of known decidable fragments. In the first part we focus on the new concept of separateness of variables and explore its applicability to the classical decision problem and beyond. Two disjoint sets of first-order variables are separated in a given formula if none of its atoms contains variables from both sets. This notion facilitates the definition of decidable extensions of many well-known decidable first-order fragments. We demonstrate this for several prefix fragments, several guarded fragments, the two-variable fragment, and for the fluted fragment. Although the extensions exhibit the same expressive power as the respective originals, certain logical properties can be expressed much more succinctly. In two cases the succinctness gap cannot be bounded using elementary functions. This fact already hints at computationally hard satisfiability problems. Indeed, we derive non-elementary lower bounds for the separated fragment, an extension of the Bernays-Schönfinkel-Ramsey fragment (E*A*-prefix sentences). On the semantic level, separateness of quantified variables may lead to weaker dependences than we encounter in general. We investigate this property in the context of model-checking games. The focus of the second part of the thesis is on linear arithmetic with uninterpreted predicates. Two novel decidable fragments are presented, both based on the Bernays-Schönfinkel-Ramsey fragment. On the negative side, we identify several small fragments of the language for which satisfiability is undecidable.
Untersuchungen der Logik erster Stufe blicken auf eine lange Tradition zurück. Es ist allgemein bekannt, dass das zugehörige Erfüllbarkeitsproblem im Allgemeinen nicht algorithmisch gelöst werden kann - man spricht daher von einer unentscheidbaren Logik. Diese Beobachtung wirft ein Schlaglicht auf die prinzipiellen Grenzen der Fähigkeiten von Computern im Allgemeinen aber auch des automatischen Schließens im Besonderen. Das Hilbertsche Entscheidungsproblem wird heute als die Erforschung der Grenze zwischen entscheidbaren und unentscheidbaren Teilen der Logik erster Stufe verstanden, wobei die untersuchten Fragmente der Logik mithilfe klar zu erfassender und berechenbarer syntaktischer Eigenschaften beschrieben werden. Viele Forscher haben bereits zu dieser Untersuchung beigetragen und zahlreiche entscheidbare und unentscheidbare Fragmente entdeckt und erforscht. Die vorliegende Dissertation setzt diese Tradition mit einer Reihe vornehmlich positiver Resultate fort und eröffnet neue Blickwinkel auf eine Reihe von Fragmenten, die im Laufe der letzten einhundert Jahre untersucht wurden. Im ersten Teil der Arbeit steht das syntaktische Konzept der Separiertheit von Variablen im Mittelpunkt, und dessen Anwendbarkeit auf das Entscheidungsproblem und darüber hinaus wird erforscht. Zwei Mengen von Individuenvariablen gelten bezüglich einer gegebenen Formel als separiert, falls in jedem Atom der Formel die Variablen aus höchstens einer der beiden Mengen vorkommen. Mithilfe dieses leicht verständlichen Begriffs lassen sich viele wohlbekannte entscheidbare Fragmente der Logik erster Stufe zu größeren Klassen von Formeln erweitern, die dennoch entscheidbar sind. Dieser Ansatz wird für neun Fragmente im Detail dargelegt, darunter mehrere Präfix-Fragmente, das Zwei-Variablen-Fragment und sogenannte "guarded" und " uted" Fragmente. Dabei stellt sich heraus, dass alle erweiterten Fragmente ebenfalls das monadische Fragment erster Stufe ohne Gleichheit enthalten. Obwohl die erweiterte Syntax in den betrachteten Fällen nicht mit einer erhöhten Ausdrucksstärke einhergeht, können bestimmte Zusammenhänge mithilfe der erweiterten Syntax deutlich kürzer formuliert werden. Zumindest in zwei Fällen ist diese Diskrepanz nicht durch eine elementare Funktion zu beschränken. Dies liefert einen ersten Hinweis darauf, dass die algorithmische Lösung des Erfüllbarkeitsproblems für die erweiterten Fragmente mit sehr hohem Rechenaufwand verbunden ist. Tatsächlich wird eine nicht-elementare untere Schranke für den entsprechenden Zeitbedarf beim sogenannten separierten Fragment, einer Erweiterung des bekannten Bernays-Schönfinkel-Ramsey-Fragments, abgeleitet. Darüber hinaus wird der Ein uss der Separiertheit von Individuenvariablen auf der semantischen Ebene untersucht, wo Abhängigkeiten zwischen quantifizierten Variablen durch deren Separiertheit stark abgeschwächt werden können. Für die genauere formale Betrachtung solcher als schwach bezeichneten Abhängigkeiten wird auf sogenannte Hintikka-Spiele zurückgegriffen. Den Schwerpunkt des zweiten Teils der vorliegenden Arbeit bildet das Entscheidungsproblem für die lineare Arithmetik über den rationalen Zahlen in Verbindung mit uninterpretierten Prädikaten. Es werden zwei bislang unbekannte entscheidbare Fragmente dieser Sprache vorgestellt, die beide auf dem Bernays-Schönfinkel-Ramsey-Fragment aufbauen. Ferner werden neue negative Resultate entwickelt und mehrere unentscheidbare Fragmente vorgestellt, die lediglich einen sehr eingeschränkten Teil der Sprache benötigen.
Link to this record: urn:nbn:de:bsz:291--ds-284280
hdl:20.500.11880/27767
http://dx.doi.org/10.22028/D291-28428
Advisor: Weidenbach, Christoph
Date of oral examination: 31-Jul-2019
Date of registration: 13-Sep-2019
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
Dissertation_Aug_15_no_hyperref.pdfDissertation, Hauptband2,56 MBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.