Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-27889
Titel: | Novel approaches to anonymity and privacy in decentralized, open settings |
VerfasserIn: | Manoharan, Praveen |
Sprache: | Englisch |
Erscheinungsjahr: | 2019 |
Erscheinungsort: | Saarbrücken |
DDC-Sachgruppe: | 510 Mathematik |
Dokumenttyp: | Dissertation |
Abstract: | The Internet has undergone dramatic changes in the last two decades, evolving from a mere communication network to a global multimedia platform in which billions of users actively exchange information. While this transformation has brought tremendous benefits to society, it has also created new threats to online privacy that existing technology is failing to keep pace with. In this dissertation, we present the results of two lines of research that developed two novel approaches to anonymity and privacy in decentralized, open settings. First, we examine the issue of attribute and identity disclosure in open settings and develop the novel notion of (k,d)-anonymity for open settings that we extensively study and validate experimentally. Furthermore, we investigate the relationship between anonymity and linkability using the notion of (k,d)-anonymity and show that, in contrast to the traditional closed setting, anonymity within one online community does necessarily imply unlinkability across different online communities in the decentralized, open setting. Secondly, we consider the transitive diffusion of information that is shared in social networks and spread through pairwise interactions of user connected in this social network. We develop the novel approach of exposure minimization to control the diffusion of information within an open network, allowing the owner to minimize its exposure by suitably choosing who they share their information with. We implement our algorithms and investigate the practical limitations of user side exposure minimization in large social networks. At their core, both of these approaches present a departure from the provable privacy guarantees that we can achieve in closed settings and a step towards sound assessments of privacy risks in decentralized, open settings. Das Internet hat in den letzten zwei Jahrzehnten eine drastische Transformation erlebt und entwickelte sich dabei von einem einfachen Kommunikationsnetzwerk zu einer globalen Multimedia Plattform auf der Milliarden von Nutzern aktiv Informationen austauschen. Diese Transformation hat zwar einen gewaltigen Nutzen und vielfältige Vorteile für die Gesellschaft mit sich gebracht, hat aber gleichzeitig auch neue Herausforderungen und Gefahren für online Privacy mit sich gebracht mit der die aktuelle Technologie nicht mithalten kann. In dieser Dissertation präsentieren wir zwei neue Ansätze für Anonymität und Privacy in dezentralisierten und offenen Systemen. Mit unserem ersten Ansatz untersuchen wir das Problem der Attribut- und Identitätspreisgabe in offenen Netzwerken und entwickeln hierzu den Begriff der (k, d)-Anonymität für offene Systeme welchen wir extensiv analysieren und anschließend experimentell validieren. Zusätzlich untersuchen wir die Beziehung zwischen Anonymität und Unlinkability in offenen Systemen mithilfe des Begriff der (k, d)-Anonymität und zeigen, dass, im Gegensatz zu traditionell betrachteten, abgeschlossenen Systeme, Anonymität innerhalb einer Online Community nicht zwingend die Unlinkability zwischen verschiedenen Online Communitys impliziert. Mit unserem zweiten Ansatz untersuchen wir die transitive Diffusion von Information die in Sozialen Netzwerken geteilt wird und sich dann durch die paarweisen Interaktionen von Nutzern durch eben dieses Netzwerk ausbreitet. Wir entwickeln eine neue Methode zur Kontrolle der Ausbreitung dieser Information durch die Minimierung ihrer Exposure, was dem Besitzer dieser Information erlaubt zu kontrollieren wie weit sich deren Information ausbreitet indem diese initial mit einer sorgfältig gewählten Menge von Nutzern geteilt wird. Wir implementieren die hierzu entwickelten Algorithmen und untersuchen die praktischen Grenzen der Exposure Minimierung, wenn sie von Nutzerseite für große Netzwerke ausgeführt werden soll. Beide hier vorgestellten Ansätze verbindet eine Neuausrichtung der Aussagen die diese bezüglich Privacy treffen: wir bewegen uns weg von beweisbaren Privacy Garantien für abgeschlossene Systeme, und machen einen Schritt zu robusten Privacy Risikoeinschätzungen für dezentralisierte, offene Systeme in denen solche beweisbaren Garantien nicht möglich sind. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-278890 hdl:20.500.11880/27457 http://dx.doi.org/10.22028/D291-27889 |
Erstgutachter: | Backes, Michael |
Tag der mündlichen Prüfung: | 29-Mär-2019 |
Datum des Eintrags: | 17-Jun-2019 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Mathematik |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
Dissertation_UdS_Manoharan.pdf | Dissertation | 1,38 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons