Please use this identifier to cite or link to this item: doi:10.22028/D291-27909
Title: Generalizations of the Multicut Problem for Computer Vision
Author(s): Levinkov, Evgeny
Language: English
Year of Publication: 2019
DDC notations: 500 Science
600 Technology
Publikation type: Doctoral Thesis
Abstract: Graph decomposition has always been a very important concept in machine learning and computer vision. Many tasks like image and mesh segmentation, community detection in social networks, as well as object tracking and human pose estimation can be formulated as a graph decomposition problem. The multicut problem in particular is a popular model to optimize for a decomposition of a given graph. Its main advantage is that no prior knowledge about the number of components or their sizes is required. However, it has several limitations, which we address in this thesis: Firstly, the multicut problem allows to specify only cost or reward for putting two direct neighbours into distinct components. This limits the expressibility of the cost function. We introduce special edges into the graph that allow to define cost or reward for putting any two vertices into distinct components, while preserving the original set of feasible solutions. We show that this considerably improves the quality of image and mesh segmentations. Second, multicut is notorious to be NP-hard for general graphs, that limits its applications to small super-pixel graphs. We define and implement two primal feasible heuristics to solve the problem. They do not provide any guarantees on the runtime or quality of solutions, but in practice show good convergence behaviour. We perform an extensive comparison on multiple graphs of different sizes and properties. Third, we extend the multicut framework by introducing node labels, so that we can jointly optimize for graph decomposition and nodes classification by means of exactly the same optimization algorithm, thus eliminating the need to hand-tune optimizers for a particular task. To prove its universality we applied it to diverse computer vision tasks, including human pose estimation, multiple object tracking, and instance-aware semantic segmentation. We show that we can improve the results over the prior art using exactly the same data as in the original works. Finally, we use employ multicuts in two applications: 1) a client-server tool for interactive video segmentation: After the pre-processing of the video a user draws strokes on several frames and a time-coherent segmentation of the entire video is performed on-the-fly. 2) we formulate a method for simultaneous segmentation and tracking of living cells in microscopy data. This task is challenging as cells split and our algorithm accounts for this, creating parental hierarchies. We also present results on multiple model fitting. We find models in data heavily corrupted by noise by finding components defining these models using higher order multicuts. We introduce an interesting extension that allows our optimization to pick better hyperparameters for each discovered model. In summary, this thesis extends the multicut problem in different directions, proposes algorithms for optimization, and applies it to novel data and settings.
Die Zerlegung von Graphen ist ein sehr wichtiges Konzept im maschinellen Lernen und maschinellen Sehen. Viele Aufgaben wie Bild- und Gittersegmentierung, Kommunitätserkennung in sozialen Netzwerken, sowie Objektverfolgung und Schätzung von menschlichen Posen können als Graphzerlegungsproblem formuliert werden. Der Mehrfachschnitt-Ansatz ist ein populäres Mittel um über die Zerlegungen eines gegebenen Graphen zu optimieren. Sein größter Vorteil ist, dass kein Vorwissen über die Anzahl an Komponenten und deren Größen benötigt wird. Dennoch hat er mehrere ernsthafte Limitierungen, welche wir in dieser Arbeit behandeln: Erstens erlaubt der klassische Mehrfachschnitt nur die Spezifikation von Kosten oder Belohnungen für die Trennung von zwei Nachbarn in verschiedene Komponenten. Dies schränkt die Ausdrucksfähigkeit der Kostenfunktion ein und führt zu suboptimalen Ergebnissen. Wir fügen dem Graphen spezielle Kanten hinzu, welche es erlauben, Kosten oder Belohnungen für die Trennung von beliebigen Paaren von Knoten in verschiedene Komponenten zu definieren, ohne die Menge an zulässigen Lösungen zu verändern. Wir zeigen, dass dies die Qualität von Bild- und Gittersegmentierungen deutlich verbessert. Zweitens ist das Mehrfachschnittproblem berüchtigt dafür NP-schwer für allgemeine Graphen zu sein, was die Anwendungen auf kleine superpixel-basierte Graphen einschränkt. Wir definieren und implementieren zwei primal-zulässige Heuristiken um das Problem zu lösen. Diese geben keine Garantien bezüglich der Laufzeit oder der Qualität der Lösungen, zeigen in der Praxis jedoch gutes Konvergenzverhalten. Wir führen einen ausführlichen Vergleich auf vielen Graphen verschiedener Größen und Eigenschaften durch. Drittens erweitern wir den Mehrfachschnitt-Ansatz um Knoten-Kennzeichnungen, sodass wir gemeinsam über Zerlegungen und Knoten-Klassifikationen mit dem gleichen Optimierungs-Algorithmus optimieren können. Dadurch wird der Bedarf der Feinabstimmung einzelner aufgabenspezifischer Löser aus dem Weg geräumt. Um die Allgemeingültigkeit dieses Ansatzes zu überprüfen, haben wir ihn auf verschiedenen Aufgaben des maschinellen Sehens, einschließlich menschliche Posenschätzung, Mehrobjektverfolgung und instanz-bewusste semantische Segmentierung, angewandt. Wir zeigen, dass wir Resultate von vorherigen Arbeiten mit exakt den gleichen Daten verbessern können. Abschließend benutzen wir Mehrfachschnitte in zwei Anwendungen: 1) Ein Nutzer-Server-Werkzeug für interaktive Video Segmentierung: Nach der Vorbearbeitung eines Videos zeichnet der Nutzer Striche auf mehrere Einzelbilder und eine zeit-kohärente Segmentierung des gesamten Videos wird in Echtzeit berechnet. 2) Wir formulieren eine Methode für simultane Segmentierung und Verfolgung von lebenden Zellen in Mikroskopie-Aufnahmen. Diese Aufgabe ist anspruchsvoll, da Zellen sich aufteilen und unser Algorithmus dies in der Erstellung von Eltern-Hierarchien mitberücksichtigen muss. Wir präsentieren außerdem Resultate zur Mehrmodellanpassung. Wir berechnen Modelle in stark verrauschten Daten indem wir mithilfe von Mehrfachschnitten höherer Ordnung Komponenten finden, die diesen Modellen entsprechen. Wir führen eine interessante Erweiterung ein, die es unserer Optimierung erlaubt, bessere Hyperparameter für jedes entdeckte Modell auszuwählen. Zusammenfassend erweitert diese Arbeit den Mehrfachschnitt-Ansatz in unterschiedlichen Richtungen, schlägt Algorithmen zur Inferenz in den resultierenden Modellen vor und wendet ihn auf neuartigen Daten und Umgebungen an.
Link to this record: urn:nbn:de:bsz:291--ds-279095
hdl:20.500.11880/27415
http://dx.doi.org/10.22028/D291-27909
Advisor: Andres, Bjoern
Date of oral examination: 8-Apr-2019
Date of registration: 6-May-2019
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
thesis.pdf25,67 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons