Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-27704
Titel: Comparative Quality Estimation for Machine Translation. An Application of Artificial Intelligence on Language Technology using Machine Learning of Human Preferences
Verfasser: Avramidis, Eleftherios
Sprache: Englisch
Erscheinungsjahr: 2019
Erscheinungsort: Saarbrücken
SWD-Schlagwörter: Maschinelle Übersetzung
Computerlinguistik
Maschinelles Lernen
Ranking
Software
Freie Schlagwörter: quality estimation
translation quality
machine translation
machine learning
language technology
human preferences
DDC-Sachgruppe: 004 Informatik
400 Sprache, Linguistik
Dokumentart : Dissertation
Kurzfassung: In this thesis we focus on Comparative Quality Estimation, as the automaticprocess of analysing two or more translations produced by a Machine Translation(MT) system and expressing a judgment about their comparison. We approach theproblem from a supervised machine learning perspective, with the aim to learnfrom human preferences. As a result, we create the ranking mechanism, a pipelinethat includes the necessary tasks for ordering several MT outputs of a givensource sentence in terms of relative quality. Quality Estimation models are trained to statistically associate the judgmentswith some qualitative features. For this purpose, we design a broad set offeatures with a particular focus on the ones with a grammatical background.Through an iterative feature engineering process, we investigate several featuresets, we conclude to the ones that achieve the best performance and we proceedto linguistically intuitive observations about the contribution of individualfeatures. Additionally, we employ several feature selection and machine learning methodsto take advantage of these features. We suggest the usage of binary classifiersafter decomposing the ranking into pairwise decisions. In order to reduce theamount of uncertain decisions (ties) we weight the pairwise decisions with theirclassification probability. Through a set of experiments, we show that the ranking mechanism can learn andreproduce rankings that correlate to the ones given by humans. Most importantly,it can be successfully compared with state-of-the-art reference-aware metricsand other known ranking methods for several language pairs. We also apply thismethod for a hybrid MT system combination and we show that it is able to improvethe overall translation performance. Finally, we examine the correlation between common MT errors and decoding eventsof the phrase-based statistical MT systems. Through evidence from the decodingprocess, we identify some cases where long-distance grammatical phenomena cannotbe captured properly. An additional outcome of this thesis is the open source software Qualitative,which implements the full pipeline of ranking mechanism and the systemcombination task. It integrates a multitude of state-of-the-art natural languageprocessing tools and can support the development of new models. Apart from theusage in experiment pipelines, it can serve as an application back-end for webapplications in real-use scenaria.
In dieser Promotionsarbeit konzentrieren wir uns auf die vergleichende Qualitätsschätzung der Maschinellen Übersetzung als ein automatisches Verfahren zur Analyse von zwei oder mehr Übersetzungen, die von Maschinenübersetzungssysteme erzeugt wurden, und zur Beurteilung von deren Vergleich. Wir gehen an das Problem aus der Perspektive des überwachten maschinellen Lernens heran, mit dem Ziel, von menschlichen Präferenzen zu lernen. Als Ergebnis erstellen wir einen Ranking-Mechanismus. Dabei handelt es sich um eine Pipeline, welche die notwendigen Arbeitsschritte für die Anordnung mehrerer Maschinenübersetzungen eines bestimmten Quellsatzes in Bezug auf die relative Qualität umfasst. Qualitätsschätzungsmodelle werden so trainiert, dass Vergleichsurteile mit einigen bestimmten Merkmalen statistisch verknüpft werden. Zu diesem Zweck konzipieren wir eine breite Palette von Merkmalen mit besonderem Fokus auf diejenigen mit einem grammatikalischen Hintergrund. Mit Hilfe eines iterativen Verfahrens der Merkmalskonstruktion untersuchen wir verschiedene Merkmalsreihen, erschließen diejenigen, die die beste Leistung erzielen, und leiten linguistisch motivierte Beobachtungen über die Beiträge der einzelnen Merkmale ab. Zusätzlich setzen wir verschiedene Methoden des maschinellen Lernens und der Merkmalsauswahl ein, um die Vorteile dieser Merkmale zu nutzen. Wir schlagen die Verwendung von binären Klassifikatoren nach Zerlegen des Rankings in paarweise Entscheidungen vor. Um die Anzahl der unklaren Entscheidungen (Unentschieden) zu verringern, gewichten wir die paarweisen Entscheidungen mit deren Klassifikationswahrscheinlichkeit. Mithilfe einer Reihe von Experimenten zeigen wir, dass der Ranking-Mechanismus Rankings lernen und reproduzieren kann, die mit denen von Menschen übereinstimmen. Die wichtigste Erkenntnis ist, dass der Mechanismus erfolgreich mit referenzbasierten Metriken und anderen bekannten Ranking-Methoden auf dem neusten Stand der Technik für verschiedene Sprachpaare verglichen werden kann. Diese Methode verwenden wir ebenfalls für eine hybride Systemkombination maschineller Übersetzer und zeigen, dass sie in der Lage ist, die gesamte Übersetzungsleistung zu verbessern. Abschließend untersuchen wir den Zusammenhang zwischen häufig vorkommenden Fehlern der maschinellen Übersetzung und Vorgängen, die während des internen Dekodierungsverfahrens der phrasenbasierten statistischen Maschinenübersetzungssysteme ablaufen. Durch Beweise aus dem Dekodierungsverfahren können wir einige Fälle identifizieren, in denen grammatikalische Phänomene mit Fernabhängigkeit nicht richtig erfasst werden können. Ein weiteres Ergebnis dieser Arbeit ist die quelloffene Software ``Qualitative'', welche die volle Pipeline des Ranking-Mechanismus und das System für die Kombinationsaufgabe implementiert. Die Software integriert eine Vielzahl modernster Softwaretools für die Verarbeitung natürlicher Sprache und kann die Entwicklung neuer Modelle unterstützen. Sie kann sowohl in Experimentierpipelines als auch als Anwendungs-Backend in realen Nutzungsszenarien verwendet werden.
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-277047
hdl:20.500.11880/27363
http://dx.doi.org/10.22028/D291-27704
Erstgutachter: Uszkoreit, Hans
Tag der mündlichen Prüfung: 4-Dez-2018
SciDok-Publikation: 15-Mär-2019
Fakultät: P - Philosophische Fakultät
Fachrichtung: P - Sprachwissenschaft und Sprachtechnologie
Fakultät / Institution:SciDok - Elektronische Dokumente der UdS

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
diss_equalborders.pdfDissertation1,32 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons