Please use this identifier to cite or link to this item: doi:10.22028/D291-27108
Title: Leveraging Semantic Annotations for Event-focused Search & Summarization
Author(s): Mishra, Arunav
Language: English
Year of Publication: 2017
SWD key words: Information Retrieval
Ereignis
Zusammenfassung
Free key words: Information retrieval
multi-document summarization
Spatiotemporal text mining
DDC notations: 600 Technology
Publikation type: Doctoral Thesis
Abstract: Today in this Big Data era, overwhelming amounts of textual information across different sources with a high degree of redundancy has made it hard for a consumer to retrospect on past events. A plausible solution is to link semantically similar information contained across the different sources to enforce a structure thereby providing multiple access paths to relevant information. Keeping this larger goal in view, this work uses Wikipedia and online news articles as two prominent yet disparate information sources to address the following three problems: • We address a linking problem to connect Wikipedia excerpts to news articles by casting it into an IR task. Our novel approach integrates time, geolocations, and entities with text to identify relevant documents that can be linked to a given excerpt. • We address an unsupervised extractive multi-document summarization task to generate a fixed-length event digest that facilitates efficient consumption of information contained within a large set of documents. Our novel approach proposes an ILP for global inference across text, time, geolocations, and entities associated with the event. • To estimate temporal focus of short event descriptions, we present a semi-supervised approach that leverages redundancy within a longitudinal news collection to estimate accurate probabilistic time models. Extensive experimental evaluations demonstrate the effectiveness and viability of our proposed approaches towards achieving the larger goal.
Im heutigen Big Data Zeitalters existieren überwältigende Mengen an Textinformationen, die über mehrere Quellen verteilt sind und ein hohes Maß an Redundanz haben. Durch diese Gegebenheiten ist eine Retroperspektive auf vergangene Ereignisse für Konsumenten nur schwer möglich. Eine plausible Lösung ist die Verknüpfung semantisch ähnlicher, aber über mehrere Quellen verteilter Informationen, um dadurch eine Struktur zu erzwingen, die mehrere Zugriffspfade auf relevante Informationen, bietet. Vor diesem Hintergrund benutzt diese Dissertation Wikipedia und Onlinenachrichten als zwei prominente, aber dennoch grundverschiedene Informationsquellen, um die folgenden drei Probleme anzusprechen: • Wir adressieren ein Verknüpfungsproblem, um Wikipedia-Auszüge mit Nachrichtenartikeln zu verbinden und das Problem in eine Information-Retrieval-Aufgabe umzuwandeln. Unser neuartiger Ansatz integriert Zeit- und Geobezüge sowie Entitäten mit Text, um relevante Dokumente, die mit einem gegebenen Auszug verknüpft werden können, zu identifizieren. • Wir befassen uns mit einer unüberwachten Extraktionsmethode zur automatischen Zusammenfassung von Texten aus mehreren Dokumenten um Ereigniszusammenfassungen mit fester Länge zu generieren, was eine effiziente Aufnahme von Informationen aus großen Dokumentenmassen ermöglicht. Unser neuartiger Ansatz schlägt eine ganzzahlige lineare Optimierungslösung vor, die globale Inferenzen über Text, Zeit, Geolokationen und mit Ereignis-verbundenen Entitäten zieht. • Um den zeitlichen Fokus kurzer Ereignisbeschreibungen abzuschätzen, stellen wir einen semi-überwachten Ansatz vor, der die Redundanz innerhalb einer langzeitigen Dokumentensammlung ausnutzt, um genaue probabilistische Zeitmodelle abzuschätzen. Umfangreiche experimentelle Auswertungen zeigen die Wirksamkeit und Tragfähigkeit unserer vorgeschlagenen Ansätze zur Erreichung des größeren Ziels.
Link to this record: urn:nbn:de:bsz:291-scidok-ds-271081
hdl:20.500.11880/26995
http://dx.doi.org/10.22028/D291-27108
Advisor: Berberich, Klaus
Date of oral examination: 12-Mar-2018
Date of registration: 28-Mar-2018
Faculty: MI - Fakultät für Mathematik und Informatik
Department: SE - Max-Planck-Institut für Informatik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
thesis.pdfMain article9,17 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons