Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-26943
Titel: Joint models for information and knowledge extraction
Verfasser: Nguyen, Dat Ba
Sprache: Englisch
Erscheinungsjahr: 2017
SWD-Schlagwörter: Frage-Antwort-System
DDC-Sachgruppe: 004 Informatik
Dokumentart : Dissertation
Kurzfassung: Information and knowledge extraction from natural language text is a key asset for question answering, semantic search, automatic summarization, and other machine reading applications. There are many sub-tasks involved such as named entity recognition, named entity disambiguation, co-reference resolution, relation extraction, event detection, discourse parsing, and others. Solving these tasks is challenging as natural language text is unstructured, noisy, and ambiguous. Key challenges, which focus on identifying and linking named entities, as well as discovering relations between them, include: • High NERD Quality. Named entity recognition and disambiguation, NERD for short, are preformed first in the extraction pipeline. Their results may affect other downstream tasks. • Coverage vs. Quality of Relation Extraction. Model-based information extraction methods achieve high extraction quality at low coverage, whereas open information extraction methods capture relational phrases between entities. However, the latter degrades in quality by non-canonicalized and noisy output. These limitations need to be overcome. • On-the-fly Knowledge Acquisition. Real-world applications such as question answering, monitoring content streams, etc. demand on-the-fly knowledge acquisition. Building such an end-to-end system is challenging because it requires high throughput, high extraction quality, and high coverage. This dissertation addresses the above challenges, developing new methods to advance the state of the art. The first contribution is a robust model for joint inference between entity recognition and disambiguation. The second contribution is a novel model for relation extraction and entity disambiguation on Wikipediastyle text. The third contribution is an end-to-end system for constructing querydriven, on-the-fly knowledge bases.
Informations- und Wissensextraktion aus natürlichsprachlichen Texten sind Schlüsselthemen vieler wissensbassierter Anwendungen. Darunter fallen zum Beispiel Frage-Antwort-Systeme, semantische Suchmaschinen, oder Applikationen zur automatischen Zusammenfassung und zum maschinellem Lesen von Texten. Zur Lösung dieser Aufgaben müssen u.a. Teilaufgaben, wie die Erkennung und Disambiguierung benannter Entitäten, Koreferenzresolution, Relationsextraktion, Ereigniserkennung, oder Diskursparsen, durchgeführt werden. Solche Aufgaben stellen eine Herausforderung dar, da Texte natürlicher Sprache in der Regel unstrukturiert, verrauscht und mehrdeutig sind. Folgende zentrale Herausforderungen adressieren sowohl die Identifizierung und das Verknüpfen benannter Entitäten als auch das Erkennen von Beziehungen zwischen diesen Entitäten: • Hohe NERD Qualität. Die Erkennung und Disambiguierung benannter Entitäten (engl. "Named Entity Recognition and Disambiguation", kurz "NERD") wird in Extraktionspipelines in der Regel zuerst ausgeführt. Die Ergebnisse beeinflussen andere nachgelagerte Aufgaben. • Abdeckung und Qualität der Relationsextraktion. Modellbasierte Informationsextraktionsmethoden erzielen eine hohe Extraktionsqualität, bei allerdings niedriger Abdeckung. Offene Informationsextraktionsmethoden erfassen relationale Phrasen zwischen Entitäten. Allerdings leiden diese Methoden an niedriger Qualität durch mehrdeutige Entitäten und verrauschte Ausgaben. Diese Einschränkungen müssen überwunden werden. • On-the-Fly Wissensakquisition. Reale Anwendungen wie Frage-Antwort- Systeme, die Überwachung von Inhaltsströmen usw. erfordern On-the-Fly Wissensakquise. Die Entwicklung solcher ganzheitlichen Systeme stellt eine hohe Herausforderung dar, da ein hoher Durchsatz, eine hohe Extraktionsqualität sowie eine hohe Abdeckung erforderlich sind. Diese Arbeit adressiert diese Probleme und stellt neue Methoden vor, um den aktuellen Stand der Forschung zu erweitern. Diese sind: • Ein robustesModell zur integrierten Inferenz zur gemeinschaftlichen Erkennung und Disambiguierung von Entitäten. • Ein neues Modell zur Relationsextraktion und Disambiguierung von Wikipedia-ähnlichen Texten. • Ein ganzheitliches System zur Erstellung Anfrage-getriebener On-the-Fly Wissensbanken.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-ds-269433
hdl:20.500.11880/26895
http://dx.doi.org/10.22028/D291-26943
Erstgutachter: Weikum, Gerhard
Tag der mündlichen Prüfung: 1-Dez-2017
SciDok-Publikation: 6-Dez-2017
Fakultät: MI - Fakultät für Mathematik und Informatik
Fachrichtung: MI - Informatik
Fakultät / Institution:MI - Fakultät für Mathematik und Informatik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Ba_Dat_Nguyen_PhD_thesis.pdf2,73 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.