Please use this identifier to cite or link to this item: doi:10.22028/D291-26876
Title: Runtime-adaptive generalized task parallelism
Author(s): Streit, Kevin
Language: English
Year of Publication: 2017
Place of publication: Saarbrücken
SWD key words: Compiler
Automatische Parallelisierung
Mehrkernprozessor
Free key words: Laufzeitoptimierung
DDC notations: 004 Computer science, internet
Publikation type: Doctoral Thesis
Abstract: Multi core systems are ubiquitous nowadays and their number is ever increasing. And while, limited by physical constraints, the computational power of the individual cores has been stagnating or even declining for years, a solution to effectively utilize the computational power that comes with the additional cores is yet to be found. Existing approaches to automatic parallelization are often highly specialized to exploit the parallelism of specific program patterns, and thus to parallelize a small subset of programs only. In addition, frequently used invasive runtime systems prohibit the combination of different approaches, which impedes the practicality of automatic parallelization. In the following thesis, we show that specializing to narrowly defined program patterns is not necessary to efficiently parallelize applications coming from different domains. We develop a generalizing approach to parallelization, which, driven by an underlying mathematical optimization problem, is able to make qualified parallelization decisions taking into account the involved runtime overhead. In combination with a specializing, adaptive runtime system the approach is able to match and even exceed the performance results achieved by specialized approaches.
Mehrkernsysteme sind heutzutage allgegenwärtig und finden täglich weitere Verbreitung. Und während, limitiert durch die Grenzen des physikalisch Machbaren, die Rechenkraft der einzelnen Kerne bereits seit Jahren stagniert oder gar sinkt, existiert bis heute keine zufriedenstellende Lösung zur effektiven Ausnutzung der gebotenen Rechenkraft, die mit der steigenden Anzahl an Kernen einhergeht. Existierende Ansätze der automatischen Parallelisierung sind häufig hoch spezialisiert auf die Ausnutzung bestimmter Programm-Muster, und somit auf die Parallelisierung weniger Programmteile. Hinzu kommt, dass häufig verwendete invasive Laufzeitsysteme die Kombination mehrerer Parallelisierungs-Ansätze verhindern, was der Praxistauglichkeit und Reichweite automatischer Ansätze im Wege steht. In der Ihnen vorliegenden Arbeit zeigen wir, dass die Spezialisierung auf eng definierte Programmuster nicht notwendig ist, um Parallelität in Programmen verschiedener Domänen effizient auszunutzen. Wir entwickeln einen generalisierenden Ansatz der Parallelisierung, der, getrieben von einem mathematischen Optimierungsproblem, in der Lage ist, fundierte Parallelisierungsentscheidungen unter Berücksichtigung relevanter Kosten zu treffen. In Kombination mit einem spezialisierenden und adaptiven Laufzeitsystem ist der entwickelte Ansatz in der Lage, mit den Ergebnissen spezialisierter Ansätze mitzuhalten, oder diese gar zu übertreffen.
Link to this record: urn:nbn:de:bsz:291-scidok-ds-268768
hdl:20.500.11880/26872
http://dx.doi.org/10.22028/D291-26876
Advisor: Zeller, Andreas
Date of oral examination: 20-Oct-2017
Date of registration: 15-Nov-2017
Third-party funds sponsorship: Part of the work presented in this thesis was performed in the context of the SoftwareCluster project EMERGENT (http://www.software-cluster.org). It was funded by the German Federal Ministry of Education and Research (BMBF) under grant no. “01IC10S01”. Later work has been supported, also by the German Federal Ministry of Education and Research (BMBF), through funding for the Center for IT-Security, Privacy and Accountability (CISPA) under grant no. “16KIS0344”.
Sponsorship ID: 01IC10S01; 16KIS0344
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
dissertation-streit-print.pdfHauptband3,33 MBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.