Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-26790
Titel: Knowledge-driven entity recognition and disambiguation in biomedical text
Verfasser: Siu, Amy
Sprache: Englisch
Erscheinungsjahr: 2017
SWD-Schlagwörter: Sprachverarbeitung
Biomedizin
Wissensbasis
Freie Schlagwörter: biomedical text mining
entity recognition
entity disambiguation
DDC-Sachgruppe: 004 Informatik
Dokumentart : Dissertation
Kurzfassung: Entity recognition and disambiguation (ERD) for the biomedical domain are notoriously difficult problems due to the variety of entities and their often long names in many variations. Existing works focus heavily on the molecular level in two ways. First, they target scientific literature as the input text genre. Second, they target single, highly specialized entity types such as chemicals, genes, and proteins. However, a wealth of biomedical information is also buried in the vast universe of Web content. In order to fully utilize all the information available, there is a need to tap into Web content as an additional input. Moreover, there is a need to cater for other entity types such as symptoms and risk factors since Web content focuses on consumer health. The goal of this thesis is to investigate ERD methods that are applicable to all entity types in scientific literature as well as Web content. In addition, we focus on under-explored aspects of the biomedical ERD problems -- scalability, long noun phrases, and out-of-knowledge base (OOKB) entities. This thesis makes four main contributions, all of which leverage knowledge in UMLS (Unified Medical Language System), the largest and most authoritative knowledge base (KB) of the biomedical domain. The first contribution is a fast dictionary lookup method for entity recognition that maximizes throughput while balancing the loss of precision and recall. The second contribution is a semantic type classification method targeting common words in long noun phrases. We develop a custom set of semantic types to capture word usages; besides biomedical usage, these types also cope with non-biomedical usage and the case of generic, non-informative usage. The third contribution is a fast heuristics method for entity disambiguation in MEDLINE abstracts, again maximizing throughput but this time maintaining accuracy. The fourth contribution is a corpus-driven entity disambiguation method that addresses OOKB entities. The method first captures the entities expressed in a corpus as latent representations that comprise in-KB and OOKB entities alike before performing entity disambiguation.
Die Erkennung und Disambiguierung von Entitäten für den biomedizinischen Bereich stellen, wegen der vielfältigen Arten von biomedizinischen Entitäten sowie deren oft langen und variantenreichen Namen, große Herausforderungen dar. Vorhergehende Arbeiten konzentrieren sich in zweierlei Hinsicht fast ausschließlich auf molekulare Entitäten. Erstens fokussieren sie sich auf wissenschaftliche Publikationen als Genre der Eingabetexte. Zweitens fokussieren sie sich auf einzelne, sehr spezialisierte Entitätstypen wie Chemikalien, Gene und Proteine. Allerdings bietet das Internet neben diesen Quellen eine Vielzahl an Inhalten biomedizinischen Wissens, das vernachlässigt wird. Um alle verfügbaren Informationen auszunutzen besteht der Bedarf weitere Internet-Inhalte als zusätzliche Quellen zu erschließen. Außerdem ist es auch erforderlich andere Entitätstypen wie Symptome und Risikofaktoren in Betracht zu ziehen, da diese für zahlreiche Inhalte im Internet, wie zum Beispiel Verbraucherinformationen im Gesundheitssektor, relevant sind. Das Ziel dieser Dissertation ist es, Methoden zur Erkennung und Disambiguierung von Entitäten zu erforschen, die alle Entitätstypen in Betracht ziehen und sowohl auf wissenschaftliche Publikationen als auch auf andere Internet-Inhalte anwendbar sind. Darüber hinaus setzen wir Schwerpunkte auf oft vernachlässigte Aspekte der biomedizinischen Erkennung und Disambiguierung von Entitäten, nämlich Skalierbarkeit, lange Nominalphrasen und fehlende Entitäten in einer Wissensbank. In dieser Hinsicht leistet diese Dissertation vier Hauptbeiträge, denen allen das Wissen von UMLS (Unified Medical Language System), der größten und wichtigsten Wissensbank im biomedizinischen Bereich, zu Grunde liegt. Der erste Beitrag ist eine schnelle Methode zur Erkennung von Entitäten mittels Lexikonabgleich, welche den Durchsatz maximiert und gleichzeitig den Verlust in Genauigkeit und Trefferquote (precision and recall) balanciert. Der zweite Beitrag ist eine Methode zur Klassifizierung der semantischen Typen von Nomen, die sich auf gebräuchliche Nomen von langen Nominalphrasen richtet und auf einer selbstentwickelten Sammlung von semantischen Typen beruht, die die Verwendung der Nomen erfasst. Neben biomedizinischen können diese Typen auch nicht-biomedizinische und allgemeine, informationsarme Verwendungen behandeln. Der dritte Beitrag ist eine schnelle Heuristikmethode zur Disambiguierung von Entitäten in MEDLINE Kurzfassungen, welche den Durchsatz maximiert, aber auch die Genauigkeit erhält. Der vierte Beitrag ist eine korpusgetriebene Methode zur Disambiguierung von Entitäten, die speziell fehlende Entitäten in einer Wissensbank behandelt. Die Methode wandelt erst die Entitäten, die in einem Textkorpus ausgedrückt aber nicht notwendigerweise in einer Wissensbank sind, in latente Darstellungen um und führt anschließend die Disambiguierung durch.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-69580
hdl:20.500.11880/26803
http://dx.doi.org/10.22028/D291-26790
Erstgutachter: Weikum, Gerhard
Tag der mündlichen Prüfung: 4-Sep-2017
SciDok-Publikation: 14-Sep-2017
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
Fachrichtung: MI - Informatik
Fakultät / Institution:MI - Fakultät für Mathematik und Informatik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
PhD_thesis_Siu.pdf1,22 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.