Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-26668
Titel: | Commonsense knowledge acquisition and applications |
VerfasserIn: | Tandon, Niket |
Sprache: | Englisch |
Erscheinungsjahr: | 2016 |
Kontrollierte Schlagwörter: | Allgemeinwissen Common Sense Wissenserwerb Künstliche Intelligenz Datenbank Data Mining |
Freie Schlagwörter: | commonsense knowledge base information extraction artificial intelligence |
DDC-Sachgruppe: | 004 Informatik |
Dokumenttyp: | Dissertation |
Abstract: | Computers are increasingly expected to make smart decisions based on what humans consider commonsense. This would require computers to understand their environment, including properties of objects in the environment (e.g., a wheel is round), relations between objects (e.g., two wheels are part of a bike, or a bike is slower than a car) and interactions of objects (e.g., a driver drives a car on the road).
The goal of this dissertation is to investigate automated methods for acquisition of large-scale, semantically organized commonsense knowledge. Prior state-of-the-art methods to acquire commonsense are either not automated or based on shallow representations. Thus, they cannot produce large-scale, semantically organized commonsense knowledge.
To achieve the goal, we divide the problem space into three research directions, constituting our core contributions:
1. Properties of objects: acquisition of properties like hasSize, hasShape, etc. We develop WebChild, a semi-supervised method to compile semantically organized properties.
2. Relationships between objects: acquisition of relations like largerThan, partOf, memberOf, etc. We develop CMPKB, a linear-programming based method to compile comparative relations, and, we develop PWKB, a method based on statistical and logical inference to compile part-whole relations.
3. Interactions between objects: acquisition of activities like drive a car, park a car, etc., with attributes such as temporal or spatial attributes. We develop Knowlywood, a method based on semantic parsing and probabilistic graphical models to compile activity knowledge.
Together, these methods result in the construction of a large, clean and semantically organized Commonsense Knowledge Base that we call WebChild KB. Von Computern wird immer mehr erwartet, dass sie kluge Entscheidungen treffen können, basierend auf Allgemeinwissen. Dies setzt voraus, dass Computer ihre Umgebung, einschließlich der Eigenschaften von Objekten (z. B. das Rad ist rund), Beziehungen zwischen Objekten (z. B. ein Fahrrad hat zwei Räder, ein Fahrrad ist langsamer als ein Auto) und Interaktionen von Objekten (z. B. ein Fahrer fährt ein Auto auf der Straße), verstehen können. Das Ziel dieser Dissertation ist es, automatische Methoden für die Erfassung von großmaßstäblichem, semantisch organisiertem Allgemeinwissen zu schaffen. Dies ist schwierig aufgrund folgender Eigenschaften des Allgemeinwissens. Es ist: (i) implizit und spärlich, da Menschen nicht explizit das Offensichtliche ausdrücken, (ii) multimodal, da es über textuelle und visuelle Inhalte verteilt ist, (iii) beeinträchtigt vom Einfluss des Berichtenden, da ungewöhnliche Fakten disproportional häufig berichtet werden, (iv) Kontextabhängig, und hat aus diesem Grund eine eingeschränkte statistische Konfidenz. Vorherige Methoden, auf diesem Gebiet sind entweder nicht automatisiert oder basieren auf flachen Repräsentationen. Daher können sie kein großmaßstäbliches, semantisch organisiertes Allgemeinwissen erzeugen. Um unser Ziel zu erreichen, teilen wir den Problemraum in drei Forschungsrichtungen, welche den Hauptbeitrag dieser Dissertation formen: 1. Eigenschaften von Objekten: Erfassung von Eigenschaften wie hasSize, hasShape, usw. Wir entwickeln WebChild, eine halbüberwachte Methode zum Erfassen semantisch organisierter Eigenschaften. 2. Beziehungen zwischen Objekten: Erfassung von Beziehungen wie largerThan, partOf, memberOf, usw. Wir entwickeln CMPKB, eine Methode basierend auf linearer Programmierung um vergleichbare Beziehungen zu erfassen. Weiterhin entwickeln wir PWKB, eine Methode basierend auf statistischer und logischer Inferenz welche zugehörigkeits Beziehungen erfasst. 3. Interaktionen zwischen Objekten: Erfassung von Aktivitäten, wie drive a car, park a car, usw. mit temporalen und räumlichen Attributen. Wir entwickeln Knowlywood, eine Methode basierend auf semantischem Parsen und probabilistischen grafischen Modellen um Aktivitätswissen zu erfassen. Als Resultat dieser Methoden erstellen wir eine große, saubere und semantisch organisierte Allgemeinwissensbasis, welche wir WebChild KB nennen. |
Link zu diesem Datensatz: | urn:nbn:de:bsz:291-scidok-66291 hdl:20.500.11880/26724 http://dx.doi.org/10.22028/D291-26668 |
Erstgutachter: | Weikum, Gerhard |
Tag der mündlichen Prüfung: | 19-Aug-2016 |
Datum des Eintrags: | 12-Sep-2016 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Informatik |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
dissertation_niket_tandon_sept_2016.pdf | 1,87 MB | Adobe PDF | Öffnen/Anzeigen |
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.