Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-26612
Titel: The simple, little and slow things count : on parameterized counting complexity
Verfasser: Curticapean, Radu
Sprache: Englisch
Erscheinungsjahr: 2015
SWD-Schlagwörter: Berechnungskomplexität
Parametrisierte Komplexität
Matching <Graphentheorie>
Abzählende Kombinatorik
Exponentialzeitalgorithmus
Graphpolynom
Freie Schlagwörter: parameterized counting complexity
exponential-time hypothesis
permanent
perfect matching
graph minor
DDC-Sachgruppe: 004 Informatik
Dokumentart : Dissertation
Kurzfassung: In this thesis, we study the parameterized complexity of counting problems, as introduced by Flum and Grohe. This area mainly involves questions of the following kind: On inputs x with a parameter k, can we solve a given counting problem in time f(k)*|x|^c for a function f that depends only on k? In the positive case, we call the problem fixed-parameter tractable (fpt). Otherwise, we try to prove its #W[1]-hardness, which is the parameterized analogue of #P-hardness. We introduce a general technique that bridges parameterized counting complexity and the so-called Holant framework. We then apply this technique to the problem of counting perfect matchings (or equivalently, the permanent) subject to structural parameters of the input graph G: On the algorithmic side, we introduce a new tractable structural parameter, namely, the minimal size of an excluded single-crossing minor of G. We complement this by showing that counting perfect matchings is #W[1]-hard when parameterized by the size of an arbitrary excluded minor. Then we turn our attention to counting general subgraphs H other than perfect matchings in a host graph G. Instead of imposing structural parameters on G, we parameterize by the size of H, giving rise to the problems #Sub(C) for fixed graph classes C: For inputs H and G with H in C, we wish to count H-copies in G. Here, C could be the class of matchings, cycles, paths, or any other recursively enumerable class. We give a full dichotomy for these problems: Either #Sub(C) has a polynomial-time algorithm or it is #W[1]-complete. Assuming that FPT and #W[1] do not coincide, we can thus precisely identify the graph classes C for which the subgraph counting problem #Sub(C) admits polynomial-time algorithms. Furthermore, we obtain an unexpected application of our extensions to the Holant framework: We show that, given two unweighted graphs, it is C=P-complete to decide whether they have the same number of perfect matchings. Finally, we prove conditional lower bounds for counting problems under the counting exponential-time hypothesis #ETH. This hypothesis, introduced by Dell et al., asserts that the satisfying assignments to n-variable formulas in 3-CNF cannot be counted in time 2^o(n). Building upon this, we introduce a general technique that allows to derive tight lower bounds for other counting problems, such as counting perfect matchings, the Tutte polynomial, and the matching polynomial.
Die vorliegende Arbeit befasst sich mit der parametrisierten Komplexität von Zählproblemen, einem von Flum und Grohe gegründeten Gebiet, in welchem Fragen der folgenden Art betrachtet werden: Können gegebene Probleme auf Eingaben x mit Parameter k in Zeit f(k)*|x|^c gelöst werden, wobei f eine Funktion ist, die nur von k abhängt? Im positiven Falle bezeichnen wir das Problem als parametrisierbar (FPT). Andernfalls versuchen wir typischerweise, dessen #W[1]-Härte zu beweisen - diese lässt sich vereinfachend als ein parametrisiertes Äquivalent der #P-Härte auffassen. Wir führen zunächst eine allgemeine Technik ein, welche die parametrisierte Zählkomplexität mit dem sogenannten Holant-Rahmenwerk verbindet. Anschließend setzen wir diese zum Zählen perfekter Paarungen (oder äquivalent, zur Auswertung der Permanente) unter strukturellen Parametern des Eingabegraphens G ein: Wir zeigen, dass das Zählen perfekter Paarungen parametrisierbar ist durch die minimale Größe eines ausgeschlossenen Minors von G, der höchstens eine Kreuzung besitzt. Dieses algorithmische Resultat komplementieren wir durch die #W[1]-Härte des Zählens perfekter Paarungen, wenn die minimale Größe eines beliebigen ausgeschlossenen Minors als Parameter betrachtet wird. Anschließend widmen wir uns dem Zählen beliebiger Subgraphen H in Graphen G. Anstelle von strukturellen Parametern betrachten wir die Größe von H als Parameter und erhalten hierdurch die Probleme #Sub(C) für feste Graphklassen C: Auf Eingaben H und G mit H in C gilt es, die H-Kopien in G zu zählen. Hierbei kann C die Klasse der Paarungen, Zyklen, Pfade, oder eine beliebige andere Klasse von Graphen darstellen. Wir zeigen eine vollständige Dichotomie für diese Probleme: Das Problem #Sub(C) ist entweder in P oder #W[1]-hart. Unter der gängigen Annahme, dass FPT und #W[1] nicht zusammenfallen, erhalten wir somit eine vollständige Klassifikation der Polynomialzeit-lösbaren Probleme #Sub(C). Weiterhin erhalten wir eine unerwartete Anwendung unserer Erweiterungen des Holant-Rahmenwerks: Wir zeigen die C=P-Vollständigkeit der Frage, ob die Anzahlen perfekter Paarungen in zwei gegebenen ungewichteten Graphen übereinstimmen. Schlussendlich zeigen wir bedingte untere Schranken für Zählprobleme unter der Zählversion der Exponentialzeithypothese #ETH, eingeführt durch Dell et al. Diese postuliert, dass die erfüllenden Belegungen in 3-KNF-Formeln mit n Variablen nicht in Zeit 2^o(n) gezählt werden können. Darauf aufbauend führen wir eine allgemeine Technik ein, die es ermöglicht, scharfe untere Schranken für andere Zählprobleme zu erhalten: Dies umfasst das Zählen perfekter Paarungen, das Tutte-Polynom und das Paarungs-Polynom.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-62178
hdl:20.500.11880/26668
http://dx.doi.org/10.22028/D291-26612
Erstgutachter: Bläser, Markus
Tag der mündlichen Prüfung: 22-Jun-2015
SciDok-Publikation: 5-Aug-2015
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
Fachrichtung: MI - Informatik
Fakultät / Institution:MI - Fakultät für Mathematik und Informatik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Thesis_Curticapean.pdf2,53 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.