Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-26533
Titel: Advanced editing methods for image and video sequences
Verfasser: Granados Velasquez, Miguel A.
Sprache: Englisch
Erscheinungsjahr: 2013
SWD-Schlagwörter: Bildverarbeitung
Videobearbeitung
Maschinelles Sehen
Bildrekonstruktion
High Dynamic Range
Optimierung
Freie Schlagwörter: video processing
image processing
computer vision
deghosting
inpainting
combinatorial optimization
DDC-Sachgruppe: 004 Informatik
Dokumentart : Dissertation
Kurzfassung: In the context of image and video editing, this thesis proposes methods for modifying the semantic content of a recorded scene. Two different editing problems are approached: First, the removal of ghosting artifacts from high dynamic range (HDR) images recovered from exposure sequences, and second, the removal of objects from video sequences recorded with and without camera motion. These editings need to be performed in a way that the result looks plausible to humans, but without having to recover detailed models about the content of the scene, e.g. its geometry, reflectance, or illumination. The proposed editing methods add new key ingredients, such as camera noise models and global optimization frameworks, that help achieving results that surpass the capabilities of state-of-the-art methods. Using these ingredients, each proposed method defines local visual properties that approximate well the specific editing requirements of each task. These properties are then encoded into a energy function that, when globally minimized, produces the required editing results. The optimization of such energy functions corresponds to Bayesian inference problems that are solved efficiently using graph cuts. The proposed methods are demonstrated to outperform other state-ofthe-art methods. Furthermore, they are demonstrated to work well on complex real-world scenarios that have not been previously addressed in the literature, i.e., highly cluttered scenes for HDR deghosting, and highly dynamic scenes and unconstraint camera motion for object removal from videos.
Diese Arbeit schlägt Methoden zur Änderung des semantischen Inhalts einer aufgenommenen Szene im Kontext der Bild-und Videobearbeitung vor. Zwei unterschiedliche Bearbeitungsmethoden werden angesprochen: Erstens, das Entfernen von Ghosting Artifacts (Geist-ähnliche Artefakte) aus High Dynamic Range (HDR) Bildern welche von Belichtungsreihen erstellt wurden und zweitens, das Entfernen von Objekten aus Videosequenzen mit und ohne Kamerabewegung. Das Bearbeiten muss in einer Weise durchgeführt werden, dass das Ergebnis für den Menschen plausibel aussieht, aber ohne das detaillierte Modelle des Szeneninhalts rekonstruiert werden müssen, z.B. die Geometrie, das Reflexionsverhalten, oder Beleuchtungseigenschaften. Die vorgeschlagenen Bearbeitungsmethoden beinhalten neuartige Elemente, etwa Kameralärm-Modelle und globale Optimierungs-Systeme, mit deren Hilfe es möglich ist die Eigenschaften der modernsten existierenden Methoden zu übertreffen. Mit Hilfe dieser Elemente definieren die vorgeschlagenen Methoden lokale visuelle Eigenschaften welche die beschriebenen Bearbeitungsmethoden gut annähern. Diese Eigenschaften werden dann als Energiefunktion codiert, welche, nach globalem minimieren, die gewünschten Bearbeitung liefert. Die Optimierung solcher Energiefunktionen entspricht dem Bayes’schen Inferenz Modell welches effizient mittels Graph-Cut Algorithmen gelöst werden kann. Es wird gezeigt, dass die vorgeschlagenen Methoden den heutigen Stand der Technik übertreffen. Darüber hinaus sind sie nachweislich gut auf komplexe natürliche Szenarien anwendbar, welche in der existierenden Literatur bisher noch nicht angegangen wurden, d.h. sehr unübersichtliche Szenen für HDR Deghosting und sehr dynamische Szenen und unbeschränkte Kamerabewegungen für das Entfernen von Objekten aus Videosequenzen.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-55021
hdl:20.500.11880/26589
http://dx.doi.org/10.22028/D291-26533
Erstgutachter: Theobalt, Christian
Tag der mündlichen Prüfung: 10-Sep-2013
SciDok-Publikation: 18-Sep-2013
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
Fachrichtung: MI - Informatik
Fakultät / Institution:MI - Fakultät für Mathematik und Informatik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
thesis.pdf130,47 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.