Please use this identifier to cite or link to this item: doi:10.22028/D291-26508
Title: Differentiability and higher integrability results for local minimizers of splitting-type variational integrals in 2D with applications to nonlinear Hencky-materials
Author(s): Bildhauer, Michael
Fuchs, Martin
Language: English
Year of Publication: 2008
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: We prove higher integrability and differentiability results for local minimizers u:\mathbb{R}^{2}\supset\Omega\rightarrow\mathbb{R}^{M}, M\geq, of the splitting-type energy \int_{\Omega}\left[h_{1}(\left|\partial_{1}u\right|)+h_{2}(\left|\partial_{2}u\right|)\right]dx. Here h_{1}, h_{2} are rather general N-functions and no relation between hh_{1} and h_{2} is required. The methods also apply to local minimizers u:\mathbb{R}^{2}\supset\Omega\rightarrow\mathbb{R}^{2} of the functional \int_{\Omega}\left[h_{1}(\left|\textrm{div}u\right|)+h_{2}(\left|\varepsilon^{D}(u)\right|)\right]dx so that we can include some variants of so-called nonlinear Hencky-materials. Further extensions concern non-autonomous problems.
Link to this record: urn:nbn:de:bsz:291-scidok-47536
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 223
Date of registration: 5-Jun-2013
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_223_08.pdf238,39 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.