Please use this identifier to cite or link to this item: doi:10.22028/D291-26413
Title: Topological analysis of discrete scalar data
Other Titles: Topologische Analyse von diskreten Skalardaten
Author(s): Günther, David
Language: English
Year of Publication: 2012
SWD key words: Algorithmus
Morse-Theorie
Diskrete Morse-Theorie
Datenanalyse
Kombinatorische Topologie
Free key words: Morse-Smale Komplex
Skalardaten
Morse-Smale complex
scalar data
DDC notations: 004 Computer science, internet
Publikation type: Doctoral Thesis
Abstract: This thesis presents a novel computational framework that allows for a robust extraction and quantification of the Morse-Smale complex of a scalar field given on a 2- or 3- dimensional manifold. The proposed framework is based on Forman's discrete Morse theory, which guarantees the topological consistency of the computed complex. Using a graph theoretical formulation of this theory, we present an algorithmic library that computes the Morse-Smale complex combinatorially with an optimal complexity of $O(n^2)$ and efficiently creates a multi-level representation of it. We explore the discrete nature of this complex, and relate it to the smooth counterpart. It is often necessary to estimate the feature strength of the individual components of the Morse-Smale complex -- the critical points and separatrices. To do so, we propose a novel output-sensitive strategy to compute the persistence of the critical points. We also extend this wellfounded concept to separatrices by introducing a novel measure of feature strength called separatrix persistence. We evaluate the applicability of our methods in a wide variety of application areas ranging from computer graphics to planetary science to computer and electron tomography.
In dieser Dissertation präsentieren wir ein neues System zur robusten Berechnung des Morse-Smale Komplexes auf 2- oder 3-dimensionalen Mannigfaltigkeiten. Das vorgestellte System basiert auf Forman’s diskreter Morsetheorie und garantiert damit die topologische Konsistenz des berechneten Komplexes. Basierend auf einer graphentheoretischer Formulierung präesentieren wir eine Bibliothek von Algorithmen, die es erlaubt, den Morse-Smale Komplex mit einer optimalen Kompliztät von $O(n^2)$ kombinatorisch zu berechnen und effizient eine mehrskalige Repräsentation davon erstellt. Wir untersuchen die diskrete Natur dieses Komplexes und vergleichen ihn zu seinem kontinuierlichen Gegenstück. Es ist häufig notwendig, die Merkmalsstärke einzelner Bestandteile des Komplexes -- der kritischen Punkte und Separatrizen -- abzuschätzen. Hierfür stellen wir eine neue outputsensitive Strategie vor, um die Persistenz von kritischen Punkten zu berechen. Wir erweitern dieses fundierte Konzept auf Separatrizen durch die Einführung des Wichtigkeitsmaßes Separatrixpersistenz. Wir evaluieren die Anwendbarkeit unserer Methoden anhand vielfältiger Anwendungen aus den Gebieten der Computergrafik, Planetologie, Computer- und Elektronentomographie.
Link to this record: urn:nbn:de:bsz:291-scidok-50563
hdl:20.500.11880/26469
http://dx.doi.org/10.22028/D291-26413
Advisor: Weinkauf, Tino
Date of oral examination: 18-Dec-2012
Date of registration: 25-Jan-2013
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
Thesis.pdf27,21 MBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.