Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-26413
Titel: Topological analysis of discrete scalar data
Sonstige Titel: Topologische Analyse von diskreten Skalardaten
Verfasser: Günther, David
Sprache: Englisch
Erscheinungsjahr: 2012
SWD-Schlagwörter: Algorithmus
Morse-Theorie
Diskrete Morse-Theorie
Datenanalyse
Kombinatorische Topologie
Freie Schlagwörter: Morse-Smale Komplex
Skalardaten
Morse-Smale complex
scalar data
DDC-Sachgruppe: 004 Informatik
Dokumentart : Dissertation
Kurzfassung: This thesis presents a novel computational framework that allows for a robust extraction and quantification of the Morse-Smale complex of a scalar field given on a 2- or 3- dimensional manifold. The proposed framework is based on Forman's discrete Morse theory, which guarantees the topological consistency of the computed complex. Using a graph theoretical formulation of this theory, we present an algorithmic library that computes the Morse-Smale complex combinatorially with an optimal complexity of $O(n^2)$ and efficiently creates a multi-level representation of it. We explore the discrete nature of this complex, and relate it to the smooth counterpart. It is often necessary to estimate the feature strength of the individual components of the Morse-Smale complex -- the critical points and separatrices. To do so, we propose a novel output-sensitive strategy to compute the persistence of the critical points. We also extend this wellfounded concept to separatrices by introducing a novel measure of feature strength called separatrix persistence. We evaluate the applicability of our methods in a wide variety of application areas ranging from computer graphics to planetary science to computer and electron tomography.
In dieser Dissertation präsentieren wir ein neues System zur robusten Berechnung des Morse-Smale Komplexes auf 2- oder 3-dimensionalen Mannigfaltigkeiten. Das vorgestellte System basiert auf Forman’s diskreter Morsetheorie und garantiert damit die topologische Konsistenz des berechneten Komplexes. Basierend auf einer graphentheoretischer Formulierung präesentieren wir eine Bibliothek von Algorithmen, die es erlaubt, den Morse-Smale Komplex mit einer optimalen Kompliztät von $O(n^2)$ kombinatorisch zu berechnen und effizient eine mehrskalige Repräsentation davon erstellt. Wir untersuchen die diskrete Natur dieses Komplexes und vergleichen ihn zu seinem kontinuierlichen Gegenstück. Es ist häufig notwendig, die Merkmalsstärke einzelner Bestandteile des Komplexes -- der kritischen Punkte und Separatrizen -- abzuschätzen. Hierfür stellen wir eine neue outputsensitive Strategie vor, um die Persistenz von kritischen Punkten zu berechen. Wir erweitern dieses fundierte Konzept auf Separatrizen durch die Einführung des Wichtigkeitsmaßes Separatrixpersistenz. Wir evaluieren die Anwendbarkeit unserer Methoden anhand vielfältiger Anwendungen aus den Gebieten der Computergrafik, Planetologie, Computer- und Elektronentomographie.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-50563
hdl:20.500.11880/26469
http://dx.doi.org/10.22028/D291-26413
Erstgutachter: Weinkauf, Tino
Tag der mündlichen Prüfung: 18-Dez-2012
SciDok-Publikation: 25-Jan-2013
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
Fachrichtung: MI - Informatik
Fakultät / Institution:MI - Fakultät für Mathematik und Informatik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Thesis.pdf27,21 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.