Please use this identifier to cite or link to this item: doi:10.22028/D291-26410
Title: Methods for constructing an opinion network for politically controversial topics
Other Titles: Methoden zur Konstruktion von Meinungsnetzwerken für politisch kontroverse Themen
Author(s): Awadallah, Rawia
Language: English
Year of Publication: 2012
SWD key words: Information Extraction
Wissensextraktion
Text Mining
Web-Seite
Meinung
Politische Einstellung
Kontroverse
Netzwerk
Free key words: Meinung-Mensch-Netzwerk
web information extraction
opinion mining
sentiment analysis
DDC notations: 004 Computer science, internet
Publikation type: Doctoral Thesis
Abstract: The US presidential race, the re-election of President Hugo Chavez, and the economic crisis in Greece and other European countries are some of the controversial topics being played on the news everyday. To understand the landscape of opinions on political controversies, it would be helpful to know which politician or other stakeholder takes which position - support or opposition - on specific aspects of these topics. The work described in this thesis aims to automatically derive a map of the opinions-people network from news and other Web docu- ments. The focus is on acquiring opinions held by various stakeholders on politi- cally controversial topics. This opinions-people network serves as a knowledge- base of opinions in the form of (opinion holder) (opinion) (topic) triples. Our system to build this knowledge-base makes use of online news sources in order to extract opinions from text snippets. These sources come with a set of unique challenges. For example, processing text snippets involves not just iden- tifying the topic and the opinion, but also attributing that opinion to a specific opinion holder. This requires making use of deep parsing and analyzing the parse tree. Moreover, in order to ensure uniformity, both the topic as well the opinion holder should be mapped to canonical strings, and the topics should also be organized into a hierarchy. Our system relies on two main components: i) acquiring opinions which uses a combination of techniques to extract opinions from online news sources, and ii) organizing topics which crawls and extracts de- bates from online sources, and organizes these debates in a hierarchy of political controversial topics. We present systematic evaluations of the different compo- nents of our system, and show their high accuracies. We also present some of the different kinds of applications that require political analysis. We present some application requires political analysis such as identifying flip-floppers, political bias, and dissenters. Such applications can make use of the knowledge-base of opinions.
Kontroverse Themen wie das US-Präsidentschaftsrennen, die Wiederwahl von Präsident Hugo Chavez, die Wirtschaftskrise in Griechenland sowie in anderen europäischen Ländern werden täglich in den Nachrichten diskutiert. Um die Bandbreite verschiedener Meinungen zu politischen Kontroversen zu verstehen, ist es hilfreich herauszufinden, welcher Politiker bzw. Interessenvertreter welchen Standpunkt (Pro oder Contra) bezüglich spezifischer Aspekte dieser Themen einnimmt. Diese Dissertation beschreibt ein Verfahren, welches automatisch eine Übersicht des Meinung-Mensch-Netzwerks aus aktuellen Nachrichten und anderen Web-Dokumenten ableitet. Der Fokus liegt hierbei auf dem Erfassen von Meinungen verschiedener Interessenvertreter bezüglich politisch kontroverser Themen. Dieses Meinung-Mensch-Netzwerk dient als Wissensbasis von Meinungen in Form von Tripeln: (Meinungsvertreter) (Meinung) (Thema). Um diese Wissensbasis aufzubauen, nutzt unser System Online-Nachrichten und extrahiert Meinungen aus Textausschnitten. Quellen von Online-Nachrichten stellen eine Reihe von besonderen Anforderungen an unser System. Zum Beispiel umfasst die Verarbeitung von Textausschnitten nicht nur die Identifikation des Themas und der geschilderten Meinung, sondern auch die Zuordnung der Stellungnahme zu einem spezifischen Meinungsvertreter.Dies erfordert eine tiefgründige Analyse sowie eine genaue Untersuchung des Syntaxbaumes. Um die Einheitlichkeit zu gewährleisten, müssen darüber hinaus Thema sowie Meinungsvertreter auf ein kanonisches Format abgebildet und die Themen hierarchisch angeordnet werden. Unser System beruht im Wesentlichen auf zwei Komponenten: i) Erkennen von Meinungen, welches verschiedene Techniken zur Extraktion von Meinungen aus Online-Nachrichten beinhaltet, und ii) Erkennen von Beziehungen zwischen Themen, welches das Crawling und Extrahieren von Debatten aus Online-Quellen sowie das Organisieren dieser Debatten in einer Hierarchie von politisch kontroversen Themen umfasst. Wir präsentieren eine systematische Evaluierung der verschiedenen Systemkomponenten, welche die hohe Genauigkeit der von uns entwickelten Techniken zeigt. Wir diskutieren außerdem verschiedene Arten von Anwendungen, die eine politische Analyse erfordern, wie zum Beispiel die Erkennung von Opportunisten, politische Voreingenommenheit und Dissidenten. All diese Anwendungen können durch die Wissensbasis von Meinungen umfangreich profitieren.
Link to this record: urn:nbn:de:bsz:291-scidok-50372
hdl:20.500.11880/26466
http://dx.doi.org/10.22028/D291-26410
Advisor: Weikum, Gerhard
Date of oral examination: 21-Dec-2012
Date of registration: 10-Jan-2013
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
phd_thesis.pdf3,15 MBAdobe PDFView/Open


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.