Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-26410
Titel: Methods for constructing an opinion network for politically controversial topics
Sonstige Titel: Methoden zur Konstruktion von Meinungsnetzwerken für politisch kontroverse Themen
Verfasser: Awadallah, Rawia
Sprache: Englisch
Erscheinungsjahr: 2012
SWD-Schlagwörter: Information Extraction
Wissensextraktion
Text Mining
Web-Seite
Meinung
Politische Einstellung
Kontroverse
Netzwerk
Freie Schlagwörter: Meinung-Mensch-Netzwerk
web information extraction
opinion mining
sentiment analysis
DDC-Sachgruppe: 004 Informatik
Dokumentart : Dissertation
Kurzfassung: The US presidential race, the re-election of President Hugo Chavez, and the economic crisis in Greece and other European countries are some of the controversial topics being played on the news everyday. To understand the landscape of opinions on political controversies, it would be helpful to know which politician or other stakeholder takes which position - support or opposition - on specific aspects of these topics. The work described in this thesis aims to automatically derive a map of the opinions-people network from news and other Web docu- ments. The focus is on acquiring opinions held by various stakeholders on politi- cally controversial topics. This opinions-people network serves as a knowledge- base of opinions in the form of (opinion holder) (opinion) (topic) triples. Our system to build this knowledge-base makes use of online news sources in order to extract opinions from text snippets. These sources come with a set of unique challenges. For example, processing text snippets involves not just iden- tifying the topic and the opinion, but also attributing that opinion to a specific opinion holder. This requires making use of deep parsing and analyzing the parse tree. Moreover, in order to ensure uniformity, both the topic as well the opinion holder should be mapped to canonical strings, and the topics should also be organized into a hierarchy. Our system relies on two main components: i) acquiring opinions which uses a combination of techniques to extract opinions from online news sources, and ii) organizing topics which crawls and extracts de- bates from online sources, and organizes these debates in a hierarchy of political controversial topics. We present systematic evaluations of the different compo- nents of our system, and show their high accuracies. We also present some of the different kinds of applications that require political analysis. We present some application requires political analysis such as identifying flip-floppers, political bias, and dissenters. Such applications can make use of the knowledge-base of opinions.
Kontroverse Themen wie das US-Präsidentschaftsrennen, die Wiederwahl von Präsident Hugo Chavez, die Wirtschaftskrise in Griechenland sowie in anderen europäischen Ländern werden täglich in den Nachrichten diskutiert. Um die Bandbreite verschiedener Meinungen zu politischen Kontroversen zu verstehen, ist es hilfreich herauszufinden, welcher Politiker bzw. Interessenvertreter welchen Standpunkt (Pro oder Contra) bezüglich spezifischer Aspekte dieser Themen einnimmt. Diese Dissertation beschreibt ein Verfahren, welches automatisch eine Übersicht des Meinung-Mensch-Netzwerks aus aktuellen Nachrichten und anderen Web-Dokumenten ableitet. Der Fokus liegt hierbei auf dem Erfassen von Meinungen verschiedener Interessenvertreter bezüglich politisch kontroverser Themen. Dieses Meinung-Mensch-Netzwerk dient als Wissensbasis von Meinungen in Form von Tripeln: (Meinungsvertreter) (Meinung) (Thema). Um diese Wissensbasis aufzubauen, nutzt unser System Online-Nachrichten und extrahiert Meinungen aus Textausschnitten. Quellen von Online-Nachrichten stellen eine Reihe von besonderen Anforderungen an unser System. Zum Beispiel umfasst die Verarbeitung von Textausschnitten nicht nur die Identifikation des Themas und der geschilderten Meinung, sondern auch die Zuordnung der Stellungnahme zu einem spezifischen Meinungsvertreter.Dies erfordert eine tiefgründige Analyse sowie eine genaue Untersuchung des Syntaxbaumes. Um die Einheitlichkeit zu gewährleisten, müssen darüber hinaus Thema sowie Meinungsvertreter auf ein kanonisches Format abgebildet und die Themen hierarchisch angeordnet werden. Unser System beruht im Wesentlichen auf zwei Komponenten: i) Erkennen von Meinungen, welches verschiedene Techniken zur Extraktion von Meinungen aus Online-Nachrichten beinhaltet, und ii) Erkennen von Beziehungen zwischen Themen, welches das Crawling und Extrahieren von Debatten aus Online-Quellen sowie das Organisieren dieser Debatten in einer Hierarchie von politisch kontroversen Themen umfasst. Wir präsentieren eine systematische Evaluierung der verschiedenen Systemkomponenten, welche die hohe Genauigkeit der von uns entwickelten Techniken zeigt. Wir diskutieren außerdem verschiedene Arten von Anwendungen, die eine politische Analyse erfordern, wie zum Beispiel die Erkennung von Opportunisten, politische Voreingenommenheit und Dissidenten. All diese Anwendungen können durch die Wissensbasis von Meinungen umfangreich profitieren.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-50372
hdl:20.500.11880/26466
http://dx.doi.org/10.22028/D291-26410
Erstgutachter: Weikum, Gerhard
Tag der mündlichen Prüfung: 21-Dez-2012
SciDok-Publikation: 10-Jan-2013
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
Fachrichtung: MI - Informatik
Fakultät / Institution:MI - Fakultät für Mathematik und Informatik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
phd_thesis.pdf3,15 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.