Please use this identifier to cite or link to this item: doi:10.22028/D291-26352
Title: A regularity theory for scalar local minimizers of splitting-type variational integrals
Author(s): Bildhauer, Michael
Fuchs, Martin
Zhong, Xiao
Language: English
Year of Publication: 2007
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: Starting from Giaquinta's counterexample [Gi] we introduce the class of splitting functionals being of (p,q)-growth with exponents p\leq q<\infty and show for the scalar case that locally bounded local minimizers are of class C^{1,\mu}. Note that to our knowledge the only C^{1,\mu}-results without imposing a relation between p and q concern the case of two independent variables as it is outlined in Marcellini's paper [Ma1], Theorem A, and later on in the work of Fusco and Sbordone [FS], Theorem 4.2.
Link to this record: urn:nbn:de:bsz:291-scidok-47204
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 188
Date of registration: 15-Mar-2012
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_188_07.pdf234,76 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.