Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-26340
Titel: Fully automated segmentation and morphometrical analysis of muscle fibre images
Verfasser: Kim, Yoo-Jin
Brox, Thomas
Feiden, Wolfgang
Weickert, Joachim
Sprache: Englisch
Erscheinungsjahr: 2006
Freie Schlagwörter: automated morphometry
image analysis
segmentation
muscle fibre size
DDC-Sachgruppe: 510 Mathematik
Dokumentart : Preprint (Vorabdruck)
Kurzfassung: Background Measurement of muscle fibre size and determination of size distribution is important in the assessment of neuromuscular disease. Fibre size estimation by simple inspection is inaccurate and subjective. Manual segmentation and measurement are time-consuming and tedious. We therefore propose an automated image analysis method for objective, reproducible, and time-saving measurement of muscle fibres in routinely hematoxylin-eosin stained cryostat sections. Methods The proposed segmentation technique makes use of recent advances in level set based segmentation, where classical edge based active contours are extended by region based cues, such as colour and texture. Segmentation and measurement are performed fully automatically. Multiple morphometric parameters, i.e., cross sectional area, lesser diameter, and perimeter are assessed in a single pass. The performance of the computed method was compared to results obtained by manual measurement by experts. Results The correct classification rate of the computed method was high (98%). Segmentation and measurement results obtained manually or automatically did not reveal any significant differences. Conclusions The presented region based active contour approach has been proven to accurately segment and measure muscle fibres. Complete automation minimises user interaction, thus, batch processing, as well as objective and reproducible muscle fibre morphometry are provided.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-46648
hdl:20.500.11880/26396
http://dx.doi.org/10.22028/D291-26340
Schriftenreihe: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Band: 177
SciDok-Publikation: 13-Mär-2012
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
Fachrichtung: MI - Mathematik
Fakultät / Institution:MI - Fakultät für Mathematik und Informatik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
preprint_177_06.pdf1,22 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.