Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-26325
Titel: Mathematical morphology for tensor data induced by the Loewner orderingin higher dimensions
Verfasser: Burgeth, Bernhard
Papenberg, Nils
Bruhn, Andres
Welk, Martin
Weickert, Joachim
Sprache: Englisch
Erscheinungsjahr: 2005
Freie Schlagwörter: dilation
erosion
opening
closing
top hats
DDC-Sachgruppe: 510 Mathematik
Dokumentart : Preprint (Vorabdruck)
Kurzfassung: Positive semidefinite matrix fields are becoming increasingly important in digital imaging. One reason for this tendency consists of the introduction of diffusion tensor magnetic resonance imaging (DTMRI). In order to perform shape analysis, enhancement or segmentation of such tensor fields, appropriate image processing tools must be developed. This paper extends fundamental morphological operations to the matrix-valued setting. We start by presenting novel definitions for the maximum and minimum of a set of matrices since these notions lie at the heart of the morphological operations. In contrast to naive approaches like the component-wise maximum or minimum of the matrix channels, our approach is based on the Loewner ordering for symmetric matrices. The notions of maximum and minimum deduced from this partial ordering satisfy desirable properties such as rotation invariance, preservation of positive semidefiniteness, and continuous dependence on the input data. We introduce erosion, dilation, opening, closing, top hats, morphological derivatives, shock filters, and mid-range filters for positive semidefinite matrix-valued images. These morphological operations incorporate information simultaneously from all matrix channels rather than treating them independently. Experiments on DT-MRI images with ball- and rod-shaped structuring elements illustrate the properties and performance of our morphological operators for matrix-valued data.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-46299
hdl:20.500.11880/26381
http://dx.doi.org/10.22028/D291-26325
Schriftenreihe: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Band: 161
SciDok-Publikation: 6-Mär-2012
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
Fachrichtung: MI - Mathematik
Fakultät / Institution:MI - Fakultät für Mathematik und Informatik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
preprint_161_05.pdf2,19 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.