Please use this identifier to cite or link to this item: doi:10.22028/D291-26317
Title: Hierarchical Cholesky decomposition of sparse matrices arising from curl-curl-equation
Author(s): Ibragimow, Ilgis
Rjasanow, Sergej
Straube, Katharina
Language: English
Year of Publication: 2005
Free key words: reordering
hierarchical matrix
approximate Cholesky decomposition
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: A new hierarchical renumbering technique for sparse matrices arising from the application of the Finite Element Method (FEM) to three-dimensional Maxwell's equations is presented. It allows the complete Cholesky decomposition of the matrix, which leads to a direct solver of O(N^{4/3}) memory requirement. In addition, an approximate factorisation yielding a preconditioner for the matrix can be constructed. For this, two algorithms using low-rank approximation are presented which have almost linear arithmetic complexity and memory requirement. The efficiency of the methods is demonstrated on several numerical examples.
Link to this record: urn:nbn:de:bsz:291-scidok-46226
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 154
Date of registration: 24-Feb-2012
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_154_05.pdf3,16 MBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.