Please use this identifier to cite or link to this item: doi:10.22028/D291-26314
Title: Unitary extensions of Hilbert A(D)-modules split
Author(s): Didas, Michael
Eschmeier, Jörg
Language: English
Year of Publication: 2005
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: Let D\subset\mathbb{C}^{n} be a relatively compact strictly pseudoconvex open set or a bounded symmetric and circled domain, and let S denote the Shilov boundary of D. Given Hilbert A(D)-modules H, J and K, we prove that if the A(D)-module structure on H or K extends to a Hilbert C(S)-module structure, then each short exact sequence 0\rightarrow H\rightarrow J\rightarrow K\rightarrow0 splits in the category of Hilbert A(D)-modules.
Link to this record: urn:nbn:de:bsz:291-scidok-46196
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 151
Date of registration: 24-Feb-2012
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_151_05.pdf165,83 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.