Please use this identifier to cite or link to this item: doi:10.22028/D291-26311
Title: Estimates for the deviation from exact solutions of variational problems with power growth functionals
Author(s): Bildhauer, Michael
Repin, Sergey
Language: English
Year of Publication: 2005
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: We study the nonlinear power growth variational problem J_{\alpha}[w]:=\int_{\Omega}\left[\frac{1}{\alpha}\left|\nabla w\right|^{\alpha}-fw\right]dx\rightarrow\textrm{min} and establish directly computable estimates for the deviation from exact solutions. In the case of superquadratic growth, these estimates are given in terms of the energy norm, in the subquadratic case we pass to estimates for the solution of the dual variational problem. Various boundary conditions are included in our considerations.
Link to this record: urn:nbn:de:bsz:291-scidok-46172
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 149
Date of registration: 15-Feb-2012
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_149_05.pdf171,42 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.