Please use this identifier to cite or link to this item: doi:10.22028/D291-26301
Title: Spherical isometries are reflexive
Author(s): Didas, Michael
Language: English
Year of Publication: 2004
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: Let H be a complex Hilbert space. A commuting system T=(T_{1},...,T_{n}) of bounded linear operators on H is called a spherical isometry if T_{1}^{\star}T_{1}+T_{2}^{\star}T_{2}+\cdots+T_{n}^{\star}T_{n}=1_{H}. In this note we prove that each spherical isometry is reflexive.
Link to this record: urn:nbn:de:bsz:291-scidok-44733
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 114
Date of registration: 15-Feb-2012
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_114_04.pdf185,06 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.