Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-26280
Titel: A TV flow based local scale estimate and its application to texture discrimination
Verfasser: Brox, Thomas
Weickert, Joachim
Sprache: Englisch
Erscheinungsjahr: 2005
Freie Schlagwörter: scale
texture
nonlinear diffusion
segmentation
DDC-Sachgruppe: 510 Mathematik
Dokumentart : Preprint (Vorabdruck)
Kurzfassung: This paper presents a local region based scale measure, which exploits properties of a certain type of nonlinear diffusion, the so-called total variation (TV) flow. During the signal evolution by means of TV flow, pixels change their value with a speed that is inversely proportional to the size of the region they belong to. From this evolution speed one can derive a local scale estimate based on regions instead of derivative filters. Main motivation for such a scale measure is its application to texture discrimination, in particular the construction of an alternative to Gabor filters. When the scale estimate is combined with the components of the structure tensor, which provides orientation information, it yields a texture feature space of only four dimensions. Like Gabor features, this sparse feature space discriminates textures by means of their orientation and scale, yet the representation of orientation and scale is less redundant. The quality of the feature space containing the new scale measure is evaluated in texture segmentation experiments by comparing results to those achieved with Gabor filters. It turns out that one can gain a total speedup of factor 2 without loosing any quality concerning the discrimination of textures.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-45014
hdl:20.500.11880/26336
http://dx.doi.org/10.22028/D291-26280
Schriftenreihe: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Band: 134
SciDok-Publikation: 18-Jan-2012
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
Fachrichtung: MI - Mathematik
Fakultät / Institution:MI - Fakultät für Mathematik und Informatik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
preprint_134_05.pdf1,7 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.