Please use this identifier to cite or link to this item: doi:10.22028/D291-26270
Title: Existence of unstable minimal surfaces of annulus type in manifolds
Author(s): Kim, Hwajeong
Language: English
Year of Publication: 2004
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: Unstable minimal surfaces are the unstable stationary points of the Dirichlet-Integral. In order to obtain unstable solutions, the method of the gradient flow together with the minimax-principle is generally used. The application of this method for minimal surfaces in the Euclidean spacce was presented in [St1]. We extend this theory for obtaining unstable minimal surfaces in Riemannian manifolds. In particular, we handle minimal surfaces of annulus type, i.e. we prescribe two Jordan curves of class C^{3} in a Riemannian manifold and prove the existence of unstable minimal surfaces of annulus type bounded by these curves.
Link to this record: urn:nbn:de:bsz:291-scidok-44848
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 119
Date of registration: 16-Jan-2012
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_119_04.pdf483,54 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.