Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-26226 | Titel: | Higher order variational problems on two-dimensional domains |
| VerfasserIn: | Bildhauer, Michael Fuchs, Martin |
| Sprache: | Englisch |
| Erscheinungsjahr: | 2005 |
| DDC-Sachgruppe: | 510 Mathematik |
| Dokumenttyp: | Sonstiges |
| Abstract: | Let u:\mathbb{R}^{2}\supset\Omega\rightarrow\mathbb{R}^{M} denote a local minimizer of J[w]=\int_{\Omega}f(\nabla^{k}w)dx, where k\geq2 and \nabla^{k}w is the tensor of all k^{th} order (weak) partial derivatives. Assuming rather general growth and ellipticity conditions for f, we prove that u actually belongs to the class C^{k,\alpha}(\Omega;\mathbb{R}^{M}) by the way extending the result of [BF2] to the higher order case by using different methods. A major tool is a lemma on the higher integrability of functions established in [BFZ]. |
| Link zu diesem Datensatz: | urn:nbn:de:bsz:291-scidok-44997 hdl:20.500.11880/26282 http://dx.doi.org/10.22028/D291-26226 |
| Schriftenreihe: | Preprint / Fachrichtung Mathematik, Universität des Saarlandes |
| Band: | 133 |
| Datum des Eintrags: | 2-Dez-2011 |
| Fakultät: | MI - Fakultät für Mathematik und Informatik |
| Fachrichtung: | MI - Mathematik |
| Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
| Datei | Beschreibung | Größe | Format | |
|---|---|---|---|---|
| preprint_133_05.pdf | 153,48 kB | Adobe PDF | Öffnen/Anzeigen |
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.

