Please use this identifier to cite or link to this item: doi:10.22028/D291-26226
Title: Higher order variational problems on two-dimensional domains
Author(s): Bildhauer, Michael
Fuchs, Martin
Language: English
Year of Publication: 2005
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: Let u:\mathbb{R}^{2}\supset\Omega\rightarrow\mathbb{R}^{M} denote a local minimizer of J[w]=\int_{\Omega}f(\nabla^{k}w)dx, where k\geq2 and \nabla^{k}w is the tensor of all k^{th} order (weak) partial derivatives. Assuming rather general growth and ellipticity conditions for f, we prove that u actually belongs to the class C^{k,\alpha}(\Omega;\mathbb{R}^{M}) by the way extending the result of [BF2] to the higher order case by using different methods. A major tool is a lemma on the higher integrability of functions established in [BFZ].
Link to this record: urn:nbn:de:bsz:291-scidok-44997
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 133
Date of registration: 2-Dec-2011
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_133_05.pdf153,48 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.