Please use this identifier to cite or link to this item: doi:10.22028/D291-26223
Title: A Fourier transform based scheme for the Helmholtz equation
Author(s): Köhl, Mirjam
Language: English
Year of Publication: 2002
Free key words: Dirichlet problem
single- and double-layer potential
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: A new scheme based on the Fourier transform for the three-dimensional Helmholtz equation is introduced. We consider the boundary integral formulation for the Dirichlet boundary value problem and use the collocation boundary element method for the discretisation of the problem. In order to solve the resulting linear systems, the identity of the Fourier transform with respect to the wave number is applied to the associated matrices. We deduce the analytical forms and some important properties of the transformed matrices. Finally, some numerical examples for the solution are presented and we compare these with results using standard techniques.
Link to this record: urn:nbn:de:bsz:291-scidok-44026
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 73
Date of registration: 2-Dec-2011
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_73_02.pdf287,2 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.