Please use this identifier to cite or link to this item: doi:10.22028/D291-26187
Title: Anderson's double complex and gamma monomials for rational function fields
Author(s): Bae, Sunghan
Gekeler, Ernst-Ulrich
Kang, Pyung-Lyun
Yin, Linsheng
Language: English
Year of Publication: 2001
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: We investigate algebraic \Gamma-monomials of Thakur's positive characteristic \Gamma-function, by using Anderson-Das double complex method of computing the sign-cohomology of the universal ordinary distribution. We prove that the \Gamma-monomial associated to an element of the second sign-cohomology of the universal ordinary distribution of \mathbb{F}_{q}(T) generates a Kummer extension of the Carlitz cyclotomic function field, which is also a Galois extension of the base field \mathbb{F}_{q}(T). These results are characteristic-p analogues of those of Deligne on classical \Gamma-monomials, proofs of which were given by Das using the double complex method. In this paper, we also obtain some results on e-monomials of Carlitz's exponential function.
Link to this record: urn:nbn:de:bsz:291-scidok-43363
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 28
Date of registration: 22-Nov-2011
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_28_01.pdf402,72 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.