Please use this identifier to cite or link to this item: doi:10.22028/D291-26181
Title: Stickelberger ideals and divisor class numbers
Author(s): Yin, Linsheng
Language: English
Year of Publication: 2000
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: Let K/k be a finite abelian extension of function fields with Galois group G. Using the Stickelberger elements associated to K/k studied by J.Tate, P.Deligne and D.Hayes, we construct an ideal I in the integral group ring \mathbb{Z}[G] relative to the extension K/k, whose elements annihilate the group of divisor classes of degree zero of K and whose rank is equal to the degree of the extension. When K/k is a (wide or narrow) ray class extension, we compute the index of I in \mathbb{Z}[G], which is equal to the divisor class number of K up to a trivial factor.
Link to this record: urn:nbn:de:bsz:291-scidok-42981
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 17
Date of registration: 18-Nov-2011
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_17_00.pdf243,71 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.