Please use this identifier to cite or link to this item: doi:10.22028/D291-26180
Title: Global distributions and special zeta values
Author(s): Yin, Linsheng
Language: English
Year of Publication: 2000
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: In this paper, we develop the theory of global distributions (i.e. distributions of global fields) and apply it to the study of special values of abelian L-functions of a number field and division points of rank one Drinfeld modules. We introduce the concept of \epsilon-distributions and give examples by \epsilon-partial zeta functions. We determine the ranks of level groups of various kinds of universal distributions of a global field k, such as universal \epsilon-, punctured, punctured even and odd distributions of k. We show the universality of several distributions derived from special values of the \epsilon-partial zeta functions by studying \mathbb{Q}-linear independence of some special values. We also propose a conjecture and a question about the universality of \epsilon-distributions of special values of \epsilon-partial zeta functions.
Link to this record: urn:nbn:de:bsz:291-scidok-42977
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 16
Date of registration: 18-Nov-2011
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_16_00.pdf313,38 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.