Please use this identifier to cite or link to this item: doi:10.22028/D291-26179
Title: Cyclotomic function fields with many rational places
Author(s): Keller, Alice
Language: English
Year of Publication: 2000
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: Let A=\mathbb{F}_{q}[T] be the polynomial ring in the variable T and K=\mathbb{F}_{q}(T) the rational function field over \mathbb{F}_{q} (the finite field with q elements), and let K_{\infty} be the completion of K at the place \infty:=\frac{1}{T}. Furthermore let C be the completion of a fixed algebraic closure of K_{\infty}. We aim to construct extensions K\subset K\text{'}\subset C with many rational places relative to the genus g(K) of K. As a first step we consider the cyclotomic fields K(n)/K with n\in A, which are generated analogously to the classical cyclotomic fields over \mathbb{Q}. Then we consieder certain decomposition fields and their intersection. Here we know a lower bound for the number of rational places. We get explicit formulas to calculate the genus, but they depend on the relative position of some subgroups of the multiplicative group (A/(n))* of the ring A/(n). So the concrete calculation of examples must be done by computer. With a special program we made a systematical search for q=2 and found for fixed genus three new lower bounds.
Link to this record: urn:nbn:de:bsz:291-scidok-42863
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 7
Date of registration: 18-Nov-2011
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_07_00.pdf222,74 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.