Please use this identifier to cite or link to this item: doi:10.22028/D291-26177
Title: Adaptive low-rank approximation of collocation matrices
Author(s): Bebendorf, Mario
Rjasanow, Sergej
Language: English
Year of Publication: 2001
Free key words: integral equations
hierarchical matrices
fast solvers
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: This article deals with the solution of integral equations using collocation methods with almost linear complexity. This is done by generating a blockwise low-rank approximation to the system matrix. In contrast to fast multipole and panel clustering the proposed algorithm is based on only few entries from the original matrix. In this article the results concerning matrix approximation from [1] are generalized to collocation matrices and improved. Furthermore, we present a new algorithm for matrix partitioning that dramatically reduces the number of blocks generated.
Link to this record: urn:nbn:de:bsz:291-scidok-43581
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 39
Date of registration: 10-Nov-2011
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_39_01.pdf657,41 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.