Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-26176
Titel: Uniqueness of Young measure in some variational problems with an infinite number of wells
Verfasser: Elfanni, Abdellah
Sprache: Englisch
Erscheinungsjahr: 2001
Freie Schlagwörter: microstructure
minimizers
variational problems
DDC-Sachgruppe: 510 Mathematik
Dokumentart : Preprint (Vorabdruck)
Kurzfassung: We study some variational problems involving energy densities (functions that have to be minimized) experiencing an infinite number of wells. Such densities are encountered in the study of microstructure of some materials as crystals. We consider the energy minimization problem with a fixed Dirichlet boundary data related by a convex relation to some number N of wells. We give a necessary and sufficient condition for nonexistence of minimizers. In the absence of minimizers, we prove that the minimizing sequences converge to the boundary data and choose their gradients around each of the N wells with a probability which tends to be constant. Moreover, they generate a unique Young measure that represents the microstructure. Our analysis shows that the deformation gradient of such materials is only governed by the N wells even if the energy density vanishes at an infinite number of wells. Our results agree with the assumption made in most of analytical and computational investigations that the deformation gradient can be modeled by a limited number of wells.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-43550
hdl:20.500.11880/26232
http://dx.doi.org/10.22028/D291-26176
Schriftenreihe: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Band: 36
SciDok-Publikation: 10-Nov-2011
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
Fachrichtung: MI - Mathematik
Fakultät / Institution:MI - Fakultät für Mathematik und Informatik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
preprint_36_01.pdf220,16 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.