Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-26171
Titel: On Markov reward modelling with FSPNs
Verfasser: Wolter, Katinka
Zisowsky, Andrea
Sprache: Englisch
Erscheinungsjahr: 2000
Freie Schlagwörter: accumulated rate reward
accuracy
DDC-Sachgruppe: 510 Mathematik
Dokumentart : Preprint (Vorabdruck)
Kurzfassung: In this paper fluid stochastic Petri nets (FSPNs) will be used for modelling reward in a performability model. Two variations of a known performability model are presented in order to demonstrate the ability of FSPNs in modelling accumulated rate reward as well as accumulated impulse reward. In the first model two fluid places are used, one of which represents the profit (reward) obtained by operating the system and the other one the buffer, that is approximated continuously. In the second model only one fluid place is used, representing the costs (negative reward) arising due to repair of system components. The costs increase continuously at deterministic rate while the system is in state of repair (which is a rate reward in the model). Additional costs incur each time the buffer fails (which is an impulse reward in the model). With a numerical solution algorithm the distribution of the reward and its mean are computed. The accuracy of the numerical algorithm is studied by showing for the first model the impact of the choice of the discretization stepsizes on the obtained solution. Different boundary conditions are discussed for the second model.
Link zu diesem Datensatz: urn:nbn:de:bsz:291-scidok-42954
hdl:20.500.11880/26227
http://dx.doi.org/10.22028/D291-26171
Schriftenreihe: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Band: 13
SciDok-Publikation: 5-Nov-2011
Fakultät: Fakultät 6 - Naturwissenschaftlich-Technische Fakultät I
Fachrichtung: MI - Mathematik
Fakultät / Institution:MI - Fakultät für Mathematik und Informatik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
preprint_13_00.pdf790,08 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.