Please use this identifier to cite or link to this item: doi:10.22028/D291-26167
Title: Toeplitz eigenvalues for Radon measures
Author(s): Tyrtyshnikov, E. E.
Zamarashkin, N. L.
Language: English
Year of Publication: 2000
Free key words: Toeplitz matrices
Szegö formulas
DDC notations: 510 Mathematics
Publikation type: Other
Abstract: It is well known that for Toeplitz matrices generated by a "sufficiently smooth" real-valued symbol, the eigenvalues behave asymptotically as the values of the symbol on uniform meshes while the singular values, even for complex-valued functions, do as those values in modulus. These facts are expressed analytically by the Szegö and Szegö-like formulas, and as is proved recently, the "smoothness" assumptions are as mild as those of L_{1}. In this paper, it is shown that the Szegö-like formulas hold true even for Toeplitz matrices generated by the so-called Radon measures.
Link to this record: urn:nbn:de:bsz:291-scidok-42883
Series name: Preprint / Fachrichtung Mathematik, Universität des Saarlandes
Series volume: 9
Date of registration: 4-Nov-2011
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
preprint_09_00.pdf196,27 kBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.