Please use this identifier to cite or link to this item: doi:10.22028/D291-26143
Title: New bounds for the longest edge of a tree in a VLSI layout
Author(s): Kaufmann, Michael
Language: English
Year of Publication: 1984
OPUS Source: Saarbrücken, 1984
DDC notations: 004 Computer science, internet
Publikation type: Report
Abstract: In the last three years many results were published about graph layout in VLSI. One aspect of graph layout is the minimization of the longest edge; for this problem Bhatt and Leiserson (1982) recently demonstrated a new technique to shorten the longest edge, and they thus achieved an upper bound of O(sqrt{N}/log N) for trees. Unfortunately, no good universal lower bounds exist. This paper presents a general techniques for proving lower bounds for trees. A second technique to embed trees is presented, which provides really good upper bounds for the maximal edge length in relation to the disposable area.
Link to this record: urn:nbn:de:bsz:291-scidok-42138
Series name: Bericht / A / Fachbereich Angewandte Mathematik und Informatik, Universität des Saarlandes
Series volume: 1984/14
Date of registration: 7-Sep-2011
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Informatik
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
fb14_1984_14.pdf5,07 MBAdobe PDFView/Open

Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.